电影评论情感分类的深度神经网络模型实证研究

Oumaima Hourrane, Nouhaila Idrissi, E. Benlahmar
{"title":"电影评论情感分类的深度神经网络模型实证研究","authors":"Oumaima Hourrane, Nouhaila Idrissi, E. Benlahmar","doi":"10.1109/ICSSD47982.2019.9003171","DOIUrl":null,"url":null,"abstract":"Sentiment classification is one of the new absorbing parts appeared in natural language processing with the emergence of community sites on the web. Taking advantage of the amount of information now available, research and industry have been seeking ways to automatically analyze the sentiments expressed in texts. The challenge for this task is the human language ambiguity, and also the lack of labeled data. In order to solve this issue, Deep learning models appeared to be effective due to their automatic learning capability. In this paper, we provide a comparative study on IMDB movie review dataset, we compare word embeddings methods and further deep learning models on sentiment analysis and give broad empirical outcomes for those keen on taking advantage of deep learning for sentiment analysis in real-world settings.","PeriodicalId":342806,"journal":{"name":"2019 1st International Conference on Smart Systems and Data Science (ICSSD)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Empirical Study of Deep Neural Networks Models for Sentiment Classification on Movie Reviews\",\"authors\":\"Oumaima Hourrane, Nouhaila Idrissi, E. Benlahmar\",\"doi\":\"10.1109/ICSSD47982.2019.9003171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment classification is one of the new absorbing parts appeared in natural language processing with the emergence of community sites on the web. Taking advantage of the amount of information now available, research and industry have been seeking ways to automatically analyze the sentiments expressed in texts. The challenge for this task is the human language ambiguity, and also the lack of labeled data. In order to solve this issue, Deep learning models appeared to be effective due to their automatic learning capability. In this paper, we provide a comparative study on IMDB movie review dataset, we compare word embeddings methods and further deep learning models on sentiment analysis and give broad empirical outcomes for those keen on taking advantage of deep learning for sentiment analysis in real-world settings.\",\"PeriodicalId\":342806,\"journal\":{\"name\":\"2019 1st International Conference on Smart Systems and Data Science (ICSSD)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 1st International Conference on Smart Systems and Data Science (ICSSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSD47982.2019.9003171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Smart Systems and Data Science (ICSSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSD47982.2019.9003171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

情感分类是随着网络上社区站点的出现,自然语言处理中出现的一个新的吸收部分。利用现有的大量信息,研究和行业一直在寻找自动分析文本中表达的情感的方法。这项任务面临的挑战是人类语言的模糊性,以及缺乏标记数据。为了解决这个问题,深度学习模型由于具有自动学习能力而显得很有效。在本文中,我们对IMDB电影评论数据集进行了比较研究,我们比较了词嵌入方法和进一步的深度学习模型在情感分析方面的作用,并为那些热衷于在现实世界中利用深度学习进行情感分析的人提供了广泛的经验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Empirical Study of Deep Neural Networks Models for Sentiment Classification on Movie Reviews
Sentiment classification is one of the new absorbing parts appeared in natural language processing with the emergence of community sites on the web. Taking advantage of the amount of information now available, research and industry have been seeking ways to automatically analyze the sentiments expressed in texts. The challenge for this task is the human language ambiguity, and also the lack of labeled data. In order to solve this issue, Deep learning models appeared to be effective due to their automatic learning capability. In this paper, we provide a comparative study on IMDB movie review dataset, we compare word embeddings methods and further deep learning models on sentiment analysis and give broad empirical outcomes for those keen on taking advantage of deep learning for sentiment analysis in real-world settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determination of Merchant Ships that Most Likely to be Autonomously Operated Adaptation of Classical Machine Learning Algorithms to Big Data Context: Problems and Challenges : Case Study: Hidden Markov Models Under Spark Predictive Process Monitoring related to the remaining time dimension: a value-driven framework Decomposition and Visualization of High-Dimensional Data in a Two Dimensional Interface Black SDN for WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1