{"title":"驱动系留翼型的非线性控制","authors":"S. Eeckhout, M. Nicotra, R. Naldi, E. Garone","doi":"10.1109/MED.2014.6961574","DOIUrl":null,"url":null,"abstract":"This paper focuses on the control of an aerial vehicle composed of an aerodynamic profile linked to a ground station by means of a tether cable. The vehicle is sustained only by the wind flowing on the aerodynamic surface. The control objective is to steer the vehicle to a desired reference point while satisfying the constraint of having the cable taut at all times. In this paper, a nonlinear state feedback with a state dependent saturation is proposed which, using Lyapunov theory, is proven to ensure regional asymptotic stability. Moreover, it is proven that this law, thanks to a state dependent saturation, ensures constraints satisfaction. The effectiveness of the proposed control strategy is shown through simulations based on the experimental aerodynamic data of a real airfoil.","PeriodicalId":127957,"journal":{"name":"22nd Mediterranean Conference on Control and Automation","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Nonlinear control of an actuated tethered airfoil\",\"authors\":\"S. Eeckhout, M. Nicotra, R. Naldi, E. Garone\",\"doi\":\"10.1109/MED.2014.6961574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the control of an aerial vehicle composed of an aerodynamic profile linked to a ground station by means of a tether cable. The vehicle is sustained only by the wind flowing on the aerodynamic surface. The control objective is to steer the vehicle to a desired reference point while satisfying the constraint of having the cable taut at all times. In this paper, a nonlinear state feedback with a state dependent saturation is proposed which, using Lyapunov theory, is proven to ensure regional asymptotic stability. Moreover, it is proven that this law, thanks to a state dependent saturation, ensures constraints satisfaction. The effectiveness of the proposed control strategy is shown through simulations based on the experimental aerodynamic data of a real airfoil.\",\"PeriodicalId\":127957,\"journal\":{\"name\":\"22nd Mediterranean Conference on Control and Automation\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd Mediterranean Conference on Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2014.6961574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2014.6961574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper focuses on the control of an aerial vehicle composed of an aerodynamic profile linked to a ground station by means of a tether cable. The vehicle is sustained only by the wind flowing on the aerodynamic surface. The control objective is to steer the vehicle to a desired reference point while satisfying the constraint of having the cable taut at all times. In this paper, a nonlinear state feedback with a state dependent saturation is proposed which, using Lyapunov theory, is proven to ensure regional asymptotic stability. Moreover, it is proven that this law, thanks to a state dependent saturation, ensures constraints satisfaction. The effectiveness of the proposed control strategy is shown through simulations based on the experimental aerodynamic data of a real airfoil.