模拟行为建模流程采用统计学习方法

Hui Li, M. Mansour, Sury Maturi, Li-C. Wang
{"title":"模拟行为建模流程采用统计学习方法","authors":"Hui Li, M. Mansour, Sury Maturi, Li-C. Wang","doi":"10.1109/ISQED.2010.5450479","DOIUrl":null,"url":null,"abstract":"This paper presents a novel behavioral-level analog circuit performance modeling methodology using kernel based support vector machine (SVM). Behavioral modeling for analog circuits is in high demand for architectural exploration and system prototyping of increasingly complex electronic systems. In this paper, we investigate the effectiveness of applying SVM to model analog circuits. Based on the different perspectives of model accuracy, we develop a model performance optimizer which automatically tunes the learning engine to achieve either the lowest worst-case error or the average error percentage. The modeling performance is compared against SPICE simulation result to validate this approach. We also present its advantages in automation and simulation speed.","PeriodicalId":369046,"journal":{"name":"2010 11th International Symposium on Quality Electronic Design (ISQED)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analog behavioral modeling flow using statistical learning method\",\"authors\":\"Hui Li, M. Mansour, Sury Maturi, Li-C. Wang\",\"doi\":\"10.1109/ISQED.2010.5450479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel behavioral-level analog circuit performance modeling methodology using kernel based support vector machine (SVM). Behavioral modeling for analog circuits is in high demand for architectural exploration and system prototyping of increasingly complex electronic systems. In this paper, we investigate the effectiveness of applying SVM to model analog circuits. Based on the different perspectives of model accuracy, we develop a model performance optimizer which automatically tunes the learning engine to achieve either the lowest worst-case error or the average error percentage. The modeling performance is compared against SPICE simulation result to validate this approach. We also present its advantages in automation and simulation speed.\",\"PeriodicalId\":369046,\"journal\":{\"name\":\"2010 11th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2010.5450479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2010.5450479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于核支持向量机(SVM)的行为级模拟电路性能建模方法。模拟电路的行为建模在日益复杂的电子系统的架构探索和系统原型设计中有很高的需求。在本文中,我们研究了将支持向量机应用于模拟电路建模的有效性。基于模型精度的不同角度,我们开发了一个模型性能优化器,它自动调整学习引擎以达到最低的最坏情况误差或平均误差百分比。通过与SPICE仿真结果的对比,验证了该方法的有效性。并介绍了该方法在自动化程度和仿真速度方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analog behavioral modeling flow using statistical learning method
This paper presents a novel behavioral-level analog circuit performance modeling methodology using kernel based support vector machine (SVM). Behavioral modeling for analog circuits is in high demand for architectural exploration and system prototyping of increasingly complex electronic systems. In this paper, we investigate the effectiveness of applying SVM to model analog circuits. Based on the different perspectives of model accuracy, we develop a model performance optimizer which automatically tunes the learning engine to achieve either the lowest worst-case error or the average error percentage. The modeling performance is compared against SPICE simulation result to validate this approach. We also present its advantages in automation and simulation speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A low power clock network placement framework Body bias driven design synthesis for optimum performance per area Adaptive task allocation for multiprocessor SoCs Reliability analysis of analog circuits by lifetime yield prediction using worst-case distance degradation rate Low power clock gates optimization for clock tree distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1