Carrington Chun, Joseph McBride, Kaveh Torabzadeh, Andrew Smith, Santana Roberts
{"title":"气象气球无线电探空仪地面任务扩展器","authors":"Carrington Chun, Joseph McBride, Kaveh Torabzadeh, Andrew Smith, Santana Roberts","doi":"10.1115/imece2021-69459","DOIUrl":null,"url":null,"abstract":"\n Thousands of balloon-assisted meteorological sensor packages, known as radiosondes, are launched every day from various monitoring stations across the continental United States. However, only a small fraction of these instrument payloads are ever recovered, with most ending up as hazardous electronics waste strewn across the country. By creating a terrestrial landing system that can be retrofitted to common commercially available radiosondes, the landing survivability of these instrument payloads may be able to be improved. Furthermore, such a landing platform could also support continued meteorological data acquisition and transmission, allowing the radiosonde to transition from high-altitude monitoring to surface level sensor monitoring. Not only would such a terrestrial mission extension module fitted to a radiosonde drastically increase the potential utility of an existing radiosonde, but such a device could also improve radiosonde recovery rates, and therefore reduce the electronics waste being produced by regular weather balloon launches.","PeriodicalId":146533,"journal":{"name":"Volume 13: Safety Engineering, Risk, and Reliability Analysis; Research Posters","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terrestrial Mission Extender for Weather Balloon Radiosonde\",\"authors\":\"Carrington Chun, Joseph McBride, Kaveh Torabzadeh, Andrew Smith, Santana Roberts\",\"doi\":\"10.1115/imece2021-69459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Thousands of balloon-assisted meteorological sensor packages, known as radiosondes, are launched every day from various monitoring stations across the continental United States. However, only a small fraction of these instrument payloads are ever recovered, with most ending up as hazardous electronics waste strewn across the country. By creating a terrestrial landing system that can be retrofitted to common commercially available radiosondes, the landing survivability of these instrument payloads may be able to be improved. Furthermore, such a landing platform could also support continued meteorological data acquisition and transmission, allowing the radiosonde to transition from high-altitude monitoring to surface level sensor monitoring. Not only would such a terrestrial mission extension module fitted to a radiosonde drastically increase the potential utility of an existing radiosonde, but such a device could also improve radiosonde recovery rates, and therefore reduce the electronics waste being produced by regular weather balloon launches.\",\"PeriodicalId\":146533,\"journal\":{\"name\":\"Volume 13: Safety Engineering, Risk, and Reliability Analysis; Research Posters\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 13: Safety Engineering, Risk, and Reliability Analysis; Research Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2021-69459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 13: Safety Engineering, Risk, and Reliability Analysis; Research Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-69459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Terrestrial Mission Extender for Weather Balloon Radiosonde
Thousands of balloon-assisted meteorological sensor packages, known as radiosondes, are launched every day from various monitoring stations across the continental United States. However, only a small fraction of these instrument payloads are ever recovered, with most ending up as hazardous electronics waste strewn across the country. By creating a terrestrial landing system that can be retrofitted to common commercially available radiosondes, the landing survivability of these instrument payloads may be able to be improved. Furthermore, such a landing platform could also support continued meteorological data acquisition and transmission, allowing the radiosonde to transition from high-altitude monitoring to surface level sensor monitoring. Not only would such a terrestrial mission extension module fitted to a radiosonde drastically increase the potential utility of an existing radiosonde, but such a device could also improve radiosonde recovery rates, and therefore reduce the electronics waste being produced by regular weather balloon launches.