采用经典遗传算法NSGAⅱ和θ-NSGAⅲ对感应电机参数进行了有效辨识

Julien Maître, S. Gaboury, B. Bouchard, A. Bouzouane
{"title":"采用经典遗传算法NSGAⅱ和θ-NSGAⅲ对感应电机参数进行了有效辨识","authors":"Julien Maître, S. Gaboury, B. Bouchard, A. Bouzouane","doi":"10.1109/IISA.2015.7388081","DOIUrl":null,"url":null,"abstract":"To remain competitive, the manufacturing industry is using computer processing power to innovate, develop and optimize new cost-efficient production strategies. This is the reason why optimization of automation systems is deployed to improve productivity, quality and robustness of the production. The different existing goals of optimization as the control machine, management of the power consumption, design of electrical installation and prediction of motor faults lead to the necessity of estimating the induction machine parameters (the stator and rotor resistances, the stator and rotor inductances and the magnetizing inductance). To these ends, researchers and companies are investigating efficient methods to identify these parameters. In this paper, we propose an effective method for the induction machine parameters identification based on the new θ-NSGA III genetic algorithm. A comparison between a classic single objective genetic algorithm (GA) and two well-known multi-objectives GAs (NSGA II and θ-NSGA III) is performed. Our results show that the multi-objective GA θ-NSGA III provides a better estimation of parameters than the classic single objective GA and the multi-objective GA NSGA II.","PeriodicalId":433872,"journal":{"name":"2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An effective identification of the induction machine parameters using a classic genetic algorithm, NSGA II and θ-NSGA III\",\"authors\":\"Julien Maître, S. Gaboury, B. Bouchard, A. Bouzouane\",\"doi\":\"10.1109/IISA.2015.7388081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To remain competitive, the manufacturing industry is using computer processing power to innovate, develop and optimize new cost-efficient production strategies. This is the reason why optimization of automation systems is deployed to improve productivity, quality and robustness of the production. The different existing goals of optimization as the control machine, management of the power consumption, design of electrical installation and prediction of motor faults lead to the necessity of estimating the induction machine parameters (the stator and rotor resistances, the stator and rotor inductances and the magnetizing inductance). To these ends, researchers and companies are investigating efficient methods to identify these parameters. In this paper, we propose an effective method for the induction machine parameters identification based on the new θ-NSGA III genetic algorithm. A comparison between a classic single objective genetic algorithm (GA) and two well-known multi-objectives GAs (NSGA II and θ-NSGA III) is performed. Our results show that the multi-objective GA θ-NSGA III provides a better estimation of parameters than the classic single objective GA and the multi-objective GA NSGA II.\",\"PeriodicalId\":433872,\"journal\":{\"name\":\"2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA.2015.7388081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2015.7388081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了保持竞争力,制造业正在使用计算机处理能力来创新、开发和优化新的成本效益生产策略。这就是为什么自动化系统的优化部署,以提高生产的生产力,质量和稳健性的原因。由于控制电机的优化、功耗管理、电气安装设计和电机故障预测等不同的现有目标,导致需要对感应电机参数(定子和转子电阻、定子和转子电感以及磁化电感)进行估算。为此,研究人员和公司正在研究识别这些参数的有效方法。本文提出了一种基于新型θ-NSGA III遗传算法的感应电机参数辨识方法。将经典的单目标遗传算法(GA)与两种著名的多目标遗传算法(NSGA II和θ-NSGA III)进行了比较。结果表明,多目标遗传算法θ-NSGA III比经典的单目标遗传算法和多目标遗传算法NSGA II提供了更好的参数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An effective identification of the induction machine parameters using a classic genetic algorithm, NSGA II and θ-NSGA III
To remain competitive, the manufacturing industry is using computer processing power to innovate, develop and optimize new cost-efficient production strategies. This is the reason why optimization of automation systems is deployed to improve productivity, quality and robustness of the production. The different existing goals of optimization as the control machine, management of the power consumption, design of electrical installation and prediction of motor faults lead to the necessity of estimating the induction machine parameters (the stator and rotor resistances, the stator and rotor inductances and the magnetizing inductance). To these ends, researchers and companies are investigating efficient methods to identify these parameters. In this paper, we propose an effective method for the induction machine parameters identification based on the new θ-NSGA III genetic algorithm. A comparison between a classic single objective genetic algorithm (GA) and two well-known multi-objectives GAs (NSGA II and θ-NSGA III) is performed. Our results show that the multi-objective GA θ-NSGA III provides a better estimation of parameters than the classic single objective GA and the multi-objective GA NSGA II.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A learning approach for strategic consumers in smart electricity markets On the construction of increasing-chord graphs on convex point sets A braided routing mechanism to reduce traffic load's local variance in wireless sensor networks Monitoring people with MCI: Deployment in a real scenario for low-budget smartphones MicroCAS: Design and implementation of proposed standards in micro-learning on mobile devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1