Yi-feng Zeng, Hua Mao, Prashant Doshi, Yinghui Pan, Jian Luo
{"title":"在交互式动态影响图中学习沟通","authors":"Yi-feng Zeng, Hua Mao, Prashant Doshi, Yinghui Pan, Jian Luo","doi":"10.1109/WI-IAT.2012.180","DOIUrl":null,"url":null,"abstract":"Communication is one of central activities in multiagent systems. It enables the knowledge sharing among multiple agents and improves the planning quality in a long run. In this paper, we study communication decision problems in the framework of interactive dynamic influence diagrams~(I-DIDs). I-DIDs are recognized probabilistic graphical models for sequential decision making in uncertain multiagent settings. We extend the representation to explicitly model communication actions as well as their relations to other variables in the domain. The challenging work is on developing an incentive mechanism that drives level 0 agents to learn communication while they act alone in a dynamic environment. We present solutions to the new model and show meaningful communication strategies in a multiagent problem domain.","PeriodicalId":220218,"journal":{"name":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"4 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning Communication in Interactive Dynamic Influence Diagrams\",\"authors\":\"Yi-feng Zeng, Hua Mao, Prashant Doshi, Yinghui Pan, Jian Luo\",\"doi\":\"10.1109/WI-IAT.2012.180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Communication is one of central activities in multiagent systems. It enables the knowledge sharing among multiple agents and improves the planning quality in a long run. In this paper, we study communication decision problems in the framework of interactive dynamic influence diagrams~(I-DIDs). I-DIDs are recognized probabilistic graphical models for sequential decision making in uncertain multiagent settings. We extend the representation to explicitly model communication actions as well as their relations to other variables in the domain. The challenging work is on developing an incentive mechanism that drives level 0 agents to learn communication while they act alone in a dynamic environment. We present solutions to the new model and show meaningful communication strategies in a multiagent problem domain.\",\"PeriodicalId\":220218,\"journal\":{\"name\":\"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"4 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2012.180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2012.180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning Communication in Interactive Dynamic Influence Diagrams
Communication is one of central activities in multiagent systems. It enables the knowledge sharing among multiple agents and improves the planning quality in a long run. In this paper, we study communication decision problems in the framework of interactive dynamic influence diagrams~(I-DIDs). I-DIDs are recognized probabilistic graphical models for sequential decision making in uncertain multiagent settings. We extend the representation to explicitly model communication actions as well as their relations to other variables in the domain. The challenging work is on developing an incentive mechanism that drives level 0 agents to learn communication while they act alone in a dynamic environment. We present solutions to the new model and show meaningful communication strategies in a multiagent problem domain.