在交互式动态影响图中学习沟通

Yi-feng Zeng, Hua Mao, Prashant Doshi, Yinghui Pan, Jian Luo
{"title":"在交互式动态影响图中学习沟通","authors":"Yi-feng Zeng, Hua Mao, Prashant Doshi, Yinghui Pan, Jian Luo","doi":"10.1109/WI-IAT.2012.180","DOIUrl":null,"url":null,"abstract":"Communication is one of central activities in multiagent systems. It enables the knowledge sharing among multiple agents and improves the planning quality in a long run. In this paper, we study communication decision problems in the framework of interactive dynamic influence diagrams~(I-DIDs). I-DIDs are recognized probabilistic graphical models for sequential decision making in uncertain multiagent settings. We extend the representation to explicitly model communication actions as well as their relations to other variables in the domain. The challenging work is on developing an incentive mechanism that drives level 0 agents to learn communication while they act alone in a dynamic environment. We present solutions to the new model and show meaningful communication strategies in a multiagent problem domain.","PeriodicalId":220218,"journal":{"name":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"4 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning Communication in Interactive Dynamic Influence Diagrams\",\"authors\":\"Yi-feng Zeng, Hua Mao, Prashant Doshi, Yinghui Pan, Jian Luo\",\"doi\":\"10.1109/WI-IAT.2012.180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Communication is one of central activities in multiagent systems. It enables the knowledge sharing among multiple agents and improves the planning quality in a long run. In this paper, we study communication decision problems in the framework of interactive dynamic influence diagrams~(I-DIDs). I-DIDs are recognized probabilistic graphical models for sequential decision making in uncertain multiagent settings. We extend the representation to explicitly model communication actions as well as their relations to other variables in the domain. The challenging work is on developing an incentive mechanism that drives level 0 agents to learn communication while they act alone in a dynamic environment. We present solutions to the new model and show meaningful communication strategies in a multiagent problem domain.\",\"PeriodicalId\":220218,\"journal\":{\"name\":\"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"4 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2012.180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2012.180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通信是多智能体系统的核心活动之一。它可以实现多个agent之间的知识共享,从长远来看可以提高规划质量。本文研究了交互式动态影响图框架下的通信决策问题。i - did是一种公认的概率图形模型,用于不确定多智能体环境下的顺序决策。我们将表示扩展为显式地建模通信行为以及它们与领域中其他变量的关系。具有挑战性的工作是开发一种激励机制,促使0级代理在动态环境中单独行动时学习沟通。我们提出了新模型的解决方案,并展示了在多智能体问题域中有意义的通信策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Communication in Interactive Dynamic Influence Diagrams
Communication is one of central activities in multiagent systems. It enables the knowledge sharing among multiple agents and improves the planning quality in a long run. In this paper, we study communication decision problems in the framework of interactive dynamic influence diagrams~(I-DIDs). I-DIDs are recognized probabilistic graphical models for sequential decision making in uncertain multiagent settings. We extend the representation to explicitly model communication actions as well as their relations to other variables in the domain. The challenging work is on developing an incentive mechanism that drives level 0 agents to learn communication while they act alone in a dynamic environment. We present solutions to the new model and show meaningful communication strategies in a multiagent problem domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conceptualization Effects on MEDLINE Documents Classification Using Rocchio Method Keyword Proximity Search over Large and Complex RDF Database Cognitive-Educational Constraints for Socially-Relevant MALL Technologies Mining Criminal Networks from Chat Log Inferring User Context from Spatio-Temporal Pattern Mining for Mobile Application Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1