FedPS:隐私保护增强的个性化搜索框架

Jing Yao, Zhicheng Dou, Ji-rong Wen
{"title":"FedPS:隐私保护增强的个性化搜索框架","authors":"Jing Yao, Zhicheng Dou, Ji-rong Wen","doi":"10.1145/3442381.3449936","DOIUrl":null,"url":null,"abstract":"Personalized search returns each user more accurate results by collecting the user’s historical search behaviors to infer her interests and query intents. However, it brings the risk of user privacy leakage, and this may greatly limit the practical application of personalized search. In this paper, we focus on the problem of privacy protection in personalized search, and propose a privacy protection enhanced personalized search framework, denoted with FedPS. Under this framework, we keep each user’s private data on her individual client, and train a shared personalized ranking model with all users’ decentralized data by means of federated learning. We implement two models within the framework: the first one applies a personalization model with a personal module that fits the user’s data distribution to alleviate the challenge of data heterogeneity in federated learning; the second model introduces trustworthy proxies and group servers to solve the problems of limited communication, performance bottleneck and privacy attack for FedPS. Experimental results verify that our proposed framework can enhance privacy protection without losing too much accuracy.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"FedPS: A Privacy Protection Enhanced Personalized Search Framework\",\"authors\":\"Jing Yao, Zhicheng Dou, Ji-rong Wen\",\"doi\":\"10.1145/3442381.3449936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personalized search returns each user more accurate results by collecting the user’s historical search behaviors to infer her interests and query intents. However, it brings the risk of user privacy leakage, and this may greatly limit the practical application of personalized search. In this paper, we focus on the problem of privacy protection in personalized search, and propose a privacy protection enhanced personalized search framework, denoted with FedPS. Under this framework, we keep each user’s private data on her individual client, and train a shared personalized ranking model with all users’ decentralized data by means of federated learning. We implement two models within the framework: the first one applies a personalization model with a personal module that fits the user’s data distribution to alleviate the challenge of data heterogeneity in federated learning; the second model introduces trustworthy proxies and group servers to solve the problems of limited communication, performance bottleneck and privacy attack for FedPS. Experimental results verify that our proposed framework can enhance privacy protection without losing too much accuracy.\",\"PeriodicalId\":106672,\"journal\":{\"name\":\"Proceedings of the Web Conference 2021\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Web Conference 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3442381.3449936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442381.3449936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

个性化搜索通过收集用户的历史搜索行为来推断其兴趣和查询意图,从而为每个用户返回更准确的结果。然而,它带来了用户隐私泄露的风险,这可能会极大地限制个性化搜索的实际应用。本文针对个性化搜索中的隐私保护问题,提出了一种隐私保护增强的个性化搜索框架,用FedPS表示。在此框架下,我们将每个用户的私人数据保存在其个人客户端上,并通过联邦学习的方式与所有用户的分散数据训练共享的个性化排名模型。我们在框架内实现了两个模型:第一个模型应用个性化模型,其中包含适合用户数据分布的个人模块,以缓解联邦学习中数据异构的挑战;第二个模型引入可信代理和组服务器,解决FedPS通信受限、性能瓶颈和隐私攻击等问题。实验结果验证了我们提出的框架可以在不损失太多准确性的情况下增强隐私保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FedPS: A Privacy Protection Enhanced Personalized Search Framework
Personalized search returns each user more accurate results by collecting the user’s historical search behaviors to infer her interests and query intents. However, it brings the risk of user privacy leakage, and this may greatly limit the practical application of personalized search. In this paper, we focus on the problem of privacy protection in personalized search, and propose a privacy protection enhanced personalized search framework, denoted with FedPS. Under this framework, we keep each user’s private data on her individual client, and train a shared personalized ranking model with all users’ decentralized data by means of federated learning. We implement two models within the framework: the first one applies a personalization model with a personal module that fits the user’s data distribution to alleviate the challenge of data heterogeneity in federated learning; the second model introduces trustworthy proxies and group servers to solve the problems of limited communication, performance bottleneck and privacy attack for FedPS. Experimental results verify that our proposed framework can enhance privacy protection without losing too much accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WiseTrans: Adaptive Transport Protocol Selection for Mobile Web Service Outlier-Resilient Web Service QoS Prediction Not All Features Are Equal: Discovering Essential Features for Preserving Prediction Privacy Unsupervised Lifelong Learning with Curricula The Structure of Toxic Conversations on Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1