基于图像检索和直接回归的自中心购物车定位方法性能比较

Emiliano Spera, Antonino Furnari, S. Battiato, G. Farinella
{"title":"基于图像检索和直接回归的自中心购物车定位方法性能比较","authors":"Emiliano Spera, Antonino Furnari, S. Battiato, G. Farinella","doi":"10.1109/RTSI.2018.8548397","DOIUrl":null,"url":null,"abstract":"This work compares the performances of two families of image-based methods for egocentric shopping cart localization in retail stores, namely, methods based on image retrieval and approaches based on direct pose regression from the input image. Our contribution is two-fold: 1) we benchmark the performances of the considered image-based techniques for camera localization in the context of retail stores; 2) we study the computational time and amount of memory required by the considered techniques. Experimental results show that the methods based on image retrieval and the ones based on direct pose regression can achieve comparable localization accuracy, while, especially when a GPU is available, the latter tend to be much faster and require less memory.","PeriodicalId":363896,"journal":{"name":"2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance Comparison of Methods Based on Image Retrieval and Direct Regression for Egocentric Shopping Cart Localization\",\"authors\":\"Emiliano Spera, Antonino Furnari, S. Battiato, G. Farinella\",\"doi\":\"10.1109/RTSI.2018.8548397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work compares the performances of two families of image-based methods for egocentric shopping cart localization in retail stores, namely, methods based on image retrieval and approaches based on direct pose regression from the input image. Our contribution is two-fold: 1) we benchmark the performances of the considered image-based techniques for camera localization in the context of retail stores; 2) we study the computational time and amount of memory required by the considered techniques. Experimental results show that the methods based on image retrieval and the ones based on direct pose regression can achieve comparable localization accuracy, while, especially when a GPU is available, the latter tend to be much faster and require less memory.\",\"PeriodicalId\":363896,\"journal\":{\"name\":\"2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTSI.2018.8548397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSI.2018.8548397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究比较了两种基于图像的零售商店自我中心购物车定位方法的性能,即基于图像检索的方法和基于输入图像的直接姿态回归的方法。我们的贡献有两个方面:1)我们对零售商店背景下相机定位的基于图像的技术的性能进行了基准测试;2)我们研究了所考虑的技术所需的计算时间和内存量。实验结果表明,基于图像检索的定位方法和基于直接姿态回归的定位方法可以达到相当的定位精度,特别是在有GPU支持的情况下,后者的定位速度更快,占用的内存更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Comparison of Methods Based on Image Retrieval and Direct Regression for Egocentric Shopping Cart Localization
This work compares the performances of two families of image-based methods for egocentric shopping cart localization in retail stores, namely, methods based on image retrieval and approaches based on direct pose regression from the input image. Our contribution is two-fold: 1) we benchmark the performances of the considered image-based techniques for camera localization in the context of retail stores; 2) we study the computational time and amount of memory required by the considered techniques. Experimental results show that the methods based on image retrieval and the ones based on direct pose regression can achieve comparable localization accuracy, while, especially when a GPU is available, the latter tend to be much faster and require less memory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Driven Approaches to Predict States in a Food Technology Case Study Automating Lung Cancer Identification in PET/CT Imaging Spectral Repeatability of a Hyperspectral System for Human Iris Imaging Hybrid Observer for Indoor Localization with Random Time-of-Arrival Measurments A LiDAR Prototype with Silicon Photomultiplier and MEMS Mirrors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1