KAPETÁNIOS:通过数字孪生实现Kubernetes的自动化适配

Johannes Zerwas, Patrick Krämer, Razvan-Mihai Ursu, Navidreza Asadi, Phil Rodgers, Leon Wong, W. Kellerer
{"title":"KAPETÁNIOS:通过数字孪生实现Kubernetes的自动化适配","authors":"Johannes Zerwas, Patrick Krämer, Razvan-Mihai Ursu, Navidreza Asadi, Phil Rodgers, Leon Wong, W. Kellerer","doi":"10.1109/NoF55974.2022.9942649","DOIUrl":null,"url":null,"abstract":"This demo presents a self-operating Kubernetes (K8s) cluster that uses digital twinning and machine learning to autonomously adapt its Horizontal Pod Autoscaler (HPA) to workload changes. The demo uses a digital twin of a K8s cluster to gather performance statistics and learn a model for the workload. With the model, the cluster autonomously adjusts HPA parameters for better performance. The demo illustrates this process and shows that the requested pod seconds decrease by ~37 %, while the request latency stays mostly unaffected.","PeriodicalId":223811,"journal":{"name":"2022 13th International Conference on Network of the Future (NoF)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"KAPETÁNIOS: Automated Kubernetes Adaptation through a Digital Twin\",\"authors\":\"Johannes Zerwas, Patrick Krämer, Razvan-Mihai Ursu, Navidreza Asadi, Phil Rodgers, Leon Wong, W. Kellerer\",\"doi\":\"10.1109/NoF55974.2022.9942649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This demo presents a self-operating Kubernetes (K8s) cluster that uses digital twinning and machine learning to autonomously adapt its Horizontal Pod Autoscaler (HPA) to workload changes. The demo uses a digital twin of a K8s cluster to gather performance statistics and learn a model for the workload. With the model, the cluster autonomously adjusts HPA parameters for better performance. The demo illustrates this process and shows that the requested pod seconds decrease by ~37 %, while the request latency stays mostly unaffected.\",\"PeriodicalId\":223811,\"journal\":{\"name\":\"2022 13th International Conference on Network of the Future (NoF)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th International Conference on Network of the Future (NoF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NoF55974.2022.9942649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Network of the Future (NoF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NoF55974.2022.9942649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这个演示展示了一个自我操作的Kubernetes (K8s)集群,它使用数字孪生和机器学习来自主调整其水平Pod Autoscaler (HPA)以适应工作负载变化。该演示使用K8s集群的数字孪生来收集性能统计数据并学习工作负载的模型。使用该模型,集群可以自主调整HPA参数以获得更好的性能。演示演示了这个过程,并显示请求的pod秒减少了约37%,而请求延迟基本不受影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KAPETÁNIOS: Automated Kubernetes Adaptation through a Digital Twin
This demo presents a self-operating Kubernetes (K8s) cluster that uses digital twinning and machine learning to autonomously adapt its Horizontal Pod Autoscaler (HPA) to workload changes. The demo uses a digital twin of a K8s cluster to gather performance statistics and learn a model for the workload. With the model, the cluster autonomously adjusts HPA parameters for better performance. The demo illustrates this process and shows that the requested pod seconds decrease by ~37 %, while the request latency stays mostly unaffected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generating Stateful Policies for IoT Device Security with Cross-Device Sensors EHGA: A Genetic Algorithm Based Approach for Scheduling Tasks on Distributed Edge-Cloud Infrastructures Proceedings of the 2022 13th International Conference on the Network of the Future (NoF 2022) A Dynamic Algorithm for Optimization of Network Traffic through Smart Network Switch Data Flow Management A Multi-objective Optimization Approach for SDVN Controllers Placement Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1