通过将自然语言表达式合成为API调用来编程机器人

Shayan Zamanirad, B. Benatallah, M. C. Barukh, F. Casati, Carlos Rodríguez
{"title":"通过将自然语言表达式合成为API调用来编程机器人","authors":"Shayan Zamanirad, B. Benatallah, M. C. Barukh, F. Casati, Carlos Rodríguez","doi":"10.1109/ASE.2017.8115694","DOIUrl":null,"url":null,"abstract":"At present, bots are still in their preliminary stages of development. Many are relatively simple, or developed ad-hoc for a very specific use-case. For this reason, they are typically programmed manually, or utilize machine-learning classifiers to interpret a fixed set of user utterances. In reality, real world conversations with humans require support for dynamically capturing users expressions. Moreover, bots will derive immeasurable value by programming them to invoke APIs for their results. Today, within the Web and Mobile development community, complex applications are being stringed together with a few lines of code — all made possible by APIs. Yet, developers today are not as empowered to program bots in much the same way. To overcome this, we introduce BotBase, a bot programming platform that dynamically synthesizes natural language user expressions into API invocations. Our solution is two faceted: Firstly, we construct an API knowledge graph to encode and evolve APIs; secondly, leveraging the above we apply techniques in NLP, ML and Entity Recognition to perform the required synthesis from natural language user expressions into API calls.","PeriodicalId":382876,"journal":{"name":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Programming bots by synthesizing natural language expressions into API invocations\",\"authors\":\"Shayan Zamanirad, B. Benatallah, M. C. Barukh, F. Casati, Carlos Rodríguez\",\"doi\":\"10.1109/ASE.2017.8115694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, bots are still in their preliminary stages of development. Many are relatively simple, or developed ad-hoc for a very specific use-case. For this reason, they are typically programmed manually, or utilize machine-learning classifiers to interpret a fixed set of user utterances. In reality, real world conversations with humans require support for dynamically capturing users expressions. Moreover, bots will derive immeasurable value by programming them to invoke APIs for their results. Today, within the Web and Mobile development community, complex applications are being stringed together with a few lines of code — all made possible by APIs. Yet, developers today are not as empowered to program bots in much the same way. To overcome this, we introduce BotBase, a bot programming platform that dynamically synthesizes natural language user expressions into API invocations. Our solution is two faceted: Firstly, we construct an API knowledge graph to encode and evolve APIs; secondly, leveraging the above we apply techniques in NLP, ML and Entity Recognition to perform the required synthesis from natural language user expressions into API calls.\",\"PeriodicalId\":382876,\"journal\":{\"name\":\"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASE.2017.8115694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2017.8115694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

目前,机器人仍处于初级发展阶段。许多都相对简单,或者是为非常具体的用例专门开发的。出于这个原因,它们通常是手动编程的,或者利用机器学习分类器来解释一组固定的用户话语。在现实中,与人类的真实对话需要支持动态捕获用户的表达式。此外,通过编程,机器人将为其结果调用api,从而获得不可估量的价值。今天,在Web和移动开发社区中,复杂的应用程序被几行代码串在一起——所有这些都是通过api实现的。然而,今天的开发人员并没有以同样的方式编程机器人。为了克服这个问题,我们引入了BotBase,这是一个机器人编程平台,可以动态地将自然语言用户表达式合成为API调用。我们的解决方案是两方面的:首先,我们构建API知识图来编码和演化API;其次,利用上述技术,我们应用NLP、ML和实体识别技术来执行从自然语言用户表达式到API调用的所需合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Programming bots by synthesizing natural language expressions into API invocations
At present, bots are still in their preliminary stages of development. Many are relatively simple, or developed ad-hoc for a very specific use-case. For this reason, they are typically programmed manually, or utilize machine-learning classifiers to interpret a fixed set of user utterances. In reality, real world conversations with humans require support for dynamically capturing users expressions. Moreover, bots will derive immeasurable value by programming them to invoke APIs for their results. Today, within the Web and Mobile development community, complex applications are being stringed together with a few lines of code — all made possible by APIs. Yet, developers today are not as empowered to program bots in much the same way. To overcome this, we introduce BotBase, a bot programming platform that dynamically synthesizes natural language user expressions into API invocations. Our solution is two faceted: Firstly, we construct an API knowledge graph to encode and evolve APIs; secondly, leveraging the above we apply techniques in NLP, ML and Entity Recognition to perform the required synthesis from natural language user expressions into API calls.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TiQi: A natural language interface for querying software project data A comprehensive study on real world concurrency bugs in Node.js Managing software evolution through semantic history slicing Software performance self-adaptation through efficient model predictive control Privacy-aware data-intensive applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1