Mohammed Senoussaoui, Milton Orlando Sarria Paja, J. F. Santos, T. Falk
{"title":"多模态抑郁分类与水平检测的模型融合","authors":"Mohammed Senoussaoui, Milton Orlando Sarria Paja, J. F. Santos, T. Falk","doi":"10.1145/2661806.2661819","DOIUrl":null,"url":null,"abstract":"Audio-visual emotion and mood disorder cues have been recently explored to develop tools to assist psychologists and psychiatrists in evaluating a patient's level of depression. In this paper, we present a number of different multimodal depression level predictors using a model fusion approach, in the context of the AVEC14 challenge. We show that an i-vector based representation for short term audio features contains useful information for depression classification and prediction. We also employed a classification step prior to regression to allow having different regression models depending on the presence or absence of depression. Our experiments show that a combination of our audio-based model and two other models based on the LGBP-TOP video features lead to an improvement of 4% over the baseline model proposed by the challenge organizers.","PeriodicalId":318508,"journal":{"name":"AVEC '14","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Model Fusion for Multimodal Depression Classification and Level Detection\",\"authors\":\"Mohammed Senoussaoui, Milton Orlando Sarria Paja, J. F. Santos, T. Falk\",\"doi\":\"10.1145/2661806.2661819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Audio-visual emotion and mood disorder cues have been recently explored to develop tools to assist psychologists and psychiatrists in evaluating a patient's level of depression. In this paper, we present a number of different multimodal depression level predictors using a model fusion approach, in the context of the AVEC14 challenge. We show that an i-vector based representation for short term audio features contains useful information for depression classification and prediction. We also employed a classification step prior to regression to allow having different regression models depending on the presence or absence of depression. Our experiments show that a combination of our audio-based model and two other models based on the LGBP-TOP video features lead to an improvement of 4% over the baseline model proposed by the challenge organizers.\",\"PeriodicalId\":318508,\"journal\":{\"name\":\"AVEC '14\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AVEC '14\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2661806.2661819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVEC '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2661806.2661819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model Fusion for Multimodal Depression Classification and Level Detection
Audio-visual emotion and mood disorder cues have been recently explored to develop tools to assist psychologists and psychiatrists in evaluating a patient's level of depression. In this paper, we present a number of different multimodal depression level predictors using a model fusion approach, in the context of the AVEC14 challenge. We show that an i-vector based representation for short term audio features contains useful information for depression classification and prediction. We also employed a classification step prior to regression to allow having different regression models depending on the presence or absence of depression. Our experiments show that a combination of our audio-based model and two other models based on the LGBP-TOP video features lead to an improvement of 4% over the baseline model proposed by the challenge organizers.