Prasanth Ganesan, E. Cherry, A. Pertsov, B. Ghoraani
{"title":"房颤消融目标定位转子映射算法的发展","authors":"Prasanth Ganesan, E. Cherry, A. Pertsov, B. Ghoraani","doi":"10.1109/LSC.2018.8572271","DOIUrl":null,"url":null,"abstract":"Catheter ablation therapy involving isolation of pulmonary veins (PVs) remains the cornerstone procedure to treat AF. However, due to the sub-optimal success rates of PV isolation, there is a need for new ablation techniques to locate AF ablation targets known as rotors, outside of the PVs. In this paper, we developed a novel rotor-mapping algorithm that uses a conventional diagnostic catheter, Lasso, to locate a rotor source. The algorithm, called the Region of Rotor (ROR) Mapping, utilizes the characteristics of local bipolar electrograms to navigate the catheter's iterative placements while generating a map, overlaid on the atrial anatomy, that displays the potential rotor region. We evaluated the developed ROR mapping algorithm using a 2D simulation of AF on a tissue with heterogeneous conduction properties. The results demonstrated a significant success rate of 93% in accurately locating the region of the rotor with a mean distance of 1.4mm from the ground truth trajectory. The algorithm could play a critical role in mapping non-PV AF ablation targets and improving the outcome of AF ablation.","PeriodicalId":254835,"journal":{"name":"2018 IEEE Life Sciences Conference (LSC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of a Rotor-Mapping Algorithm to Locate Ablation Targets During Atrial Fibrillation\",\"authors\":\"Prasanth Ganesan, E. Cherry, A. Pertsov, B. Ghoraani\",\"doi\":\"10.1109/LSC.2018.8572271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Catheter ablation therapy involving isolation of pulmonary veins (PVs) remains the cornerstone procedure to treat AF. However, due to the sub-optimal success rates of PV isolation, there is a need for new ablation techniques to locate AF ablation targets known as rotors, outside of the PVs. In this paper, we developed a novel rotor-mapping algorithm that uses a conventional diagnostic catheter, Lasso, to locate a rotor source. The algorithm, called the Region of Rotor (ROR) Mapping, utilizes the characteristics of local bipolar electrograms to navigate the catheter's iterative placements while generating a map, overlaid on the atrial anatomy, that displays the potential rotor region. We evaluated the developed ROR mapping algorithm using a 2D simulation of AF on a tissue with heterogeneous conduction properties. The results demonstrated a significant success rate of 93% in accurately locating the region of the rotor with a mean distance of 1.4mm from the ground truth trajectory. The algorithm could play a critical role in mapping non-PV AF ablation targets and improving the outcome of AF ablation.\",\"PeriodicalId\":254835,\"journal\":{\"name\":\"2018 IEEE Life Sciences Conference (LSC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Life Sciences Conference (LSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LSC.2018.8572271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Life Sciences Conference (LSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSC.2018.8572271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a Rotor-Mapping Algorithm to Locate Ablation Targets During Atrial Fibrillation
Catheter ablation therapy involving isolation of pulmonary veins (PVs) remains the cornerstone procedure to treat AF. However, due to the sub-optimal success rates of PV isolation, there is a need for new ablation techniques to locate AF ablation targets known as rotors, outside of the PVs. In this paper, we developed a novel rotor-mapping algorithm that uses a conventional diagnostic catheter, Lasso, to locate a rotor source. The algorithm, called the Region of Rotor (ROR) Mapping, utilizes the characteristics of local bipolar electrograms to navigate the catheter's iterative placements while generating a map, overlaid on the atrial anatomy, that displays the potential rotor region. We evaluated the developed ROR mapping algorithm using a 2D simulation of AF on a tissue with heterogeneous conduction properties. The results demonstrated a significant success rate of 93% in accurately locating the region of the rotor with a mean distance of 1.4mm from the ground truth trajectory. The algorithm could play a critical role in mapping non-PV AF ablation targets and improving the outcome of AF ablation.