{"title":"对cvar敏感的强盗:轻尾案例","authors":"L. A. Prashanth, K. Jagannathan, R. Kolla","doi":"10.1109/ICC47138.2019.9123222","DOIUrl":null,"url":null,"abstract":"Traditional multi-armed bandit problems are geared towards finding the arm with the highest expected value – an objective that is risk-neutral. In several practical applications, e.g., finance, a risk-sensitive objective is to control the worst-case losses and Conditional Value-at-Risk (CVaR) is a popular risk measure for modeling the aforementioned objective. We consider the CVaR optimization problem in a best-arm identification framework under a fixed budget. First, we derive a novel two-sided concentration bound for a well-known CVaR estimator using empirical distribution function, assuming that the underlying distribution is unbounded, but light-tailed. This bound may be of independent interest. Second, we adapt the well-known successive rejects algorithm to incorporate a CVaRbased criterion and derive an upper-bound on the probability of incorrect identification of our proposed algorithm.","PeriodicalId":231050,"journal":{"name":"2019 Sixth Indian Control Conference (ICC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CVaR-sensitive bandits: The light-tailed case\",\"authors\":\"L. A. Prashanth, K. Jagannathan, R. Kolla\",\"doi\":\"10.1109/ICC47138.2019.9123222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional multi-armed bandit problems are geared towards finding the arm with the highest expected value – an objective that is risk-neutral. In several practical applications, e.g., finance, a risk-sensitive objective is to control the worst-case losses and Conditional Value-at-Risk (CVaR) is a popular risk measure for modeling the aforementioned objective. We consider the CVaR optimization problem in a best-arm identification framework under a fixed budget. First, we derive a novel two-sided concentration bound for a well-known CVaR estimator using empirical distribution function, assuming that the underlying distribution is unbounded, but light-tailed. This bound may be of independent interest. Second, we adapt the well-known successive rejects algorithm to incorporate a CVaRbased criterion and derive an upper-bound on the probability of incorrect identification of our proposed algorithm.\",\"PeriodicalId\":231050,\"journal\":{\"name\":\"2019 Sixth Indian Control Conference (ICC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Sixth Indian Control Conference (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC47138.2019.9123222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Sixth Indian Control Conference (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC47138.2019.9123222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Traditional multi-armed bandit problems are geared towards finding the arm with the highest expected value – an objective that is risk-neutral. In several practical applications, e.g., finance, a risk-sensitive objective is to control the worst-case losses and Conditional Value-at-Risk (CVaR) is a popular risk measure for modeling the aforementioned objective. We consider the CVaR optimization problem in a best-arm identification framework under a fixed budget. First, we derive a novel two-sided concentration bound for a well-known CVaR estimator using empirical distribution function, assuming that the underlying distribution is unbounded, but light-tailed. This bound may be of independent interest. Second, we adapt the well-known successive rejects algorithm to incorporate a CVaRbased criterion and derive an upper-bound on the probability of incorrect identification of our proposed algorithm.