{"title":"基于愤怒的脑机接口使用fNIRS神经反馈","authors":"Gabor Aranyi, Fred Charles, M. Cavazza","doi":"10.1145/2807442.2807447","DOIUrl":null,"url":null,"abstract":"Functional near-infrared spectroscopy (fNIRS) holds increasing potential for Brain-Computer Interfaces (BCI) due to its portability, ease of application, robustness to movement artifacts, and relatively low cost. The use of fNIRS to support the development of affective BCI has received comparatively less attention, despite the role played by the prefrontal cortex in affective control, and the appropriateness of fNIRS to measure prefrontal activity. We present an active, fNIRS-based neurofeedback (NF) interface, which uses differential changes in oxygenation between the left and right sides of the dorsolateral prefrontal cortex to operationalize BCI input. The system is activated by users generating a state of anger, which has been previously linked to increased left prefrontal asymmetry. We have incorporated this NF interface into an experimental platform adapted from a virtual 3D narrative, in which users can express anger at a virtual character perceived as evil, causing the character to disappear progressively. Eleven subjects used the system and were able to successfully perform NF despite minimal training. Extensive analysis confirms that success was associated with the intent to express anger. This has positive implications for the design of affective BCI based on prefrontal asymmetry.","PeriodicalId":103668,"journal":{"name":"Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Anger-based BCI Using fNIRS Neurofeedback\",\"authors\":\"Gabor Aranyi, Fred Charles, M. Cavazza\",\"doi\":\"10.1145/2807442.2807447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional near-infrared spectroscopy (fNIRS) holds increasing potential for Brain-Computer Interfaces (BCI) due to its portability, ease of application, robustness to movement artifacts, and relatively low cost. The use of fNIRS to support the development of affective BCI has received comparatively less attention, despite the role played by the prefrontal cortex in affective control, and the appropriateness of fNIRS to measure prefrontal activity. We present an active, fNIRS-based neurofeedback (NF) interface, which uses differential changes in oxygenation between the left and right sides of the dorsolateral prefrontal cortex to operationalize BCI input. The system is activated by users generating a state of anger, which has been previously linked to increased left prefrontal asymmetry. We have incorporated this NF interface into an experimental platform adapted from a virtual 3D narrative, in which users can express anger at a virtual character perceived as evil, causing the character to disappear progressively. Eleven subjects used the system and were able to successfully perform NF despite minimal training. Extensive analysis confirms that success was associated with the intent to express anger. This has positive implications for the design of affective BCI based on prefrontal asymmetry.\",\"PeriodicalId\":103668,\"journal\":{\"name\":\"Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2807442.2807447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2807442.2807447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Functional near-infrared spectroscopy (fNIRS) holds increasing potential for Brain-Computer Interfaces (BCI) due to its portability, ease of application, robustness to movement artifacts, and relatively low cost. The use of fNIRS to support the development of affective BCI has received comparatively less attention, despite the role played by the prefrontal cortex in affective control, and the appropriateness of fNIRS to measure prefrontal activity. We present an active, fNIRS-based neurofeedback (NF) interface, which uses differential changes in oxygenation between the left and right sides of the dorsolateral prefrontal cortex to operationalize BCI input. The system is activated by users generating a state of anger, which has been previously linked to increased left prefrontal asymmetry. We have incorporated this NF interface into an experimental platform adapted from a virtual 3D narrative, in which users can express anger at a virtual character perceived as evil, causing the character to disappear progressively. Eleven subjects used the system and were able to successfully perform NF despite minimal training. Extensive analysis confirms that success was associated with the intent to express anger. This has positive implications for the design of affective BCI based on prefrontal asymmetry.