热电应用窄间隙半导体的晶体生长

C. Kloc, K. Fess, W. Kaefer, K. Friemelt, H. Riazi-Nejad, M. Wendl, E. Bucher
{"title":"热电应用窄间隙半导体的晶体生长","authors":"C. Kloc, K. Fess, W. Kaefer, K. Friemelt, H. Riazi-Nejad, M. Wendl, E. Bucher","doi":"10.1109/ICT.1996.553281","DOIUrl":null,"url":null,"abstract":"Recently, there has been a growing interest in small integrated cooling units. This prompted us to establish a screening program for the search of new efficient thermoelectric materials requiring the optimization of figure of merit. Preparation and crystal growth experiments on possible thermoelectric compounds: TiNiSn, ZrNiSn, CoSb/sub 3/, SrAs/sub 3/, /spl beta/-FeSi/sub 2/, FeSi, NiS, La/sub 3/Cu/sub 3/Sb/sub 4/, Ce/sub 3/Cu/sub 3/Sb/sub 4/, Gd/sub 3/Cu/sub 3/Sb/sub 4/ are presented. Single crystals of congruently melting compounds were obtained by the Czochralski or Bridgman techniques. The peritectic decomposing compounds were prepared by flux-growth. Low defect crystals were obtained by vapor transport. Whenever it was possible, more than one technique was studied for the preparation of the same compound. Transport properties and thermoelectric properties were measured and discussed.","PeriodicalId":447328,"journal":{"name":"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1996-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Crystal growth of narrow gap semiconductors for thermoelectric applications\",\"authors\":\"C. Kloc, K. Fess, W. Kaefer, K. Friemelt, H. Riazi-Nejad, M. Wendl, E. Bucher\",\"doi\":\"10.1109/ICT.1996.553281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, there has been a growing interest in small integrated cooling units. This prompted us to establish a screening program for the search of new efficient thermoelectric materials requiring the optimization of figure of merit. Preparation and crystal growth experiments on possible thermoelectric compounds: TiNiSn, ZrNiSn, CoSb/sub 3/, SrAs/sub 3/, /spl beta/-FeSi/sub 2/, FeSi, NiS, La/sub 3/Cu/sub 3/Sb/sub 4/, Ce/sub 3/Cu/sub 3/Sb/sub 4/, Gd/sub 3/Cu/sub 3/Sb/sub 4/ are presented. Single crystals of congruently melting compounds were obtained by the Czochralski or Bridgman techniques. The peritectic decomposing compounds were prepared by flux-growth. Low defect crystals were obtained by vapor transport. Whenever it was possible, more than one technique was studied for the preparation of the same compound. Transport properties and thermoelectric properties were measured and discussed.\",\"PeriodicalId\":447328,\"journal\":{\"name\":\"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.1996.553281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.1996.553281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

最近,人们对小型集成冷却装置的兴趣越来越大。这促使我们建立了一个筛选程序,以寻找新的高效热电材料,需要优化的品质系数。介绍了可能的热电化合物TiNiSn、ZrNiSn、CoSb/sub 3/、SrAs/sub 3/、/spl beta/-FeSi/sub 2/、FeSi、NiS、La/sub 3/Cu/sub 3/Sb/sub 4/、Ce/sub 3/Cu/sub 3/Sb/sub 4/、Gd/sub 3/Cu/sub 3/Sb/sub 4/的制备及晶体生长实验。用Czochralski或Bridgman方法获得了完全熔融化合物的单晶。采用通量生长法制备了包晶分解化合物。通过气相输运得到低缺陷晶体。只要有可能,就研究多种技术来制备同一化合物。对其输运性质和热电性质进行了测量和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crystal growth of narrow gap semiconductors for thermoelectric applications
Recently, there has been a growing interest in small integrated cooling units. This prompted us to establish a screening program for the search of new efficient thermoelectric materials requiring the optimization of figure of merit. Preparation and crystal growth experiments on possible thermoelectric compounds: TiNiSn, ZrNiSn, CoSb/sub 3/, SrAs/sub 3/, /spl beta/-FeSi/sub 2/, FeSi, NiS, La/sub 3/Cu/sub 3/Sb/sub 4/, Ce/sub 3/Cu/sub 3/Sb/sub 4/, Gd/sub 3/Cu/sub 3/Sb/sub 4/ are presented. Single crystals of congruently melting compounds were obtained by the Czochralski or Bridgman techniques. The peritectic decomposing compounds were prepared by flux-growth. Low defect crystals were obtained by vapor transport. Whenever it was possible, more than one technique was studied for the preparation of the same compound. Transport properties and thermoelectric properties were measured and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermoelectric generation and related properties of conventional type module based on Si-Ge alloy Doping with organic halogen-containing compounds the Bi2(Te,Se)3 solid solutions The theoretical analysis of the thermoelectric semiconducting crystalline materials figure of merit Thermoelectric coolers with small response time Effective figure of merit increase at the large temperature drops
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1