四轮载客机器人系统的设计

Youngjae Yun, Donghyeon Seo, Dong Han Kim
{"title":"四轮载客机器人系统的设计","authors":"Youngjae Yun, Donghyeon Seo, Dong Han Kim","doi":"10.1109/IRC.2018.00071","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a test platform for a person carrier robot to measure the impacts and position changes of users on various types of terrain changes when boarding a robot. A robot is developed using a passenger wheelchair and a motor drive system, and Bluetooth is installed in a PC and a MCU (microcontroller unit) to enable movement commands to be transmitted and received. Also, the motor drive system used in this paper is driven by receiving analog signals. However, the MCU that receives the movement command from the PC does not operate because it sends a PWM (Pulse Width Modulation) signal, which is a digital signal, to the motor drive system. Therefore, the PWM signal output from the MCU is converted into an analog signal through the RC filter. These signals are transmitted to the motor driver, enabling the motor to be driven. The simulation and experiment conduct based on the completed person carrier robot.","PeriodicalId":416113,"journal":{"name":"2018 Second IEEE International Conference on Robotic Computing (IRC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Designed of Four-Wheeled Person Carrier Robot System\",\"authors\":\"Youngjae Yun, Donghyeon Seo, Dong Han Kim\",\"doi\":\"10.1109/IRC.2018.00071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a test platform for a person carrier robot to measure the impacts and position changes of users on various types of terrain changes when boarding a robot. A robot is developed using a passenger wheelchair and a motor drive system, and Bluetooth is installed in a PC and a MCU (microcontroller unit) to enable movement commands to be transmitted and received. Also, the motor drive system used in this paper is driven by receiving analog signals. However, the MCU that receives the movement command from the PC does not operate because it sends a PWM (Pulse Width Modulation) signal, which is a digital signal, to the motor drive system. Therefore, the PWM signal output from the MCU is converted into an analog signal through the RC filter. These signals are transmitted to the motor driver, enabling the motor to be driven. The simulation and experiment conduct based on the completed person carrier robot.\",\"PeriodicalId\":416113,\"journal\":{\"name\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC.2018.00071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2018.00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种载客机器人的测试平台,用于测量用户在登上机器人时对各种地形变化的影响和位置变化。利用轮椅和电机驱动系统开发了机器人,并在PC机和微控制器(MCU)上安装了蓝牙,实现了运动指令的发送和接收。此外,本文所采用的电机驱动系统是通过接收模拟信号来驱动的。然而,从PC接收运动命令的MCU不操作,因为它向电机驱动系统发送PWM(脉冲宽度调制)信号,这是一种数字信号。因此,单片机输出的PWM信号通过RC滤波器转换成模拟信号。这些信号被传送到电机驱动器,使电机被驱动。基于已完成的人体搬运机器人进行了仿真和实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Designed of Four-Wheeled Person Carrier Robot System
In this paper, we propose a test platform for a person carrier robot to measure the impacts and position changes of users on various types of terrain changes when boarding a robot. A robot is developed using a passenger wheelchair and a motor drive system, and Bluetooth is installed in a PC and a MCU (microcontroller unit) to enable movement commands to be transmitted and received. Also, the motor drive system used in this paper is driven by receiving analog signals. However, the MCU that receives the movement command from the PC does not operate because it sends a PWM (Pulse Width Modulation) signal, which is a digital signal, to the motor drive system. Therefore, the PWM signal output from the MCU is converted into an analog signal through the RC filter. These signals are transmitted to the motor driver, enabling the motor to be driven. The simulation and experiment conduct based on the completed person carrier robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning a Set of Interrelated Tasks by Using Sequences of Motor Policies for a Strategic Intrinsically Motivated Learner Improving Code Quality in ROS Packages Using a Temporal Extension of First-Order Logic Rapid Qualification of Mereotopological Relationships Using Signed Distance Fields Towards a Multi-mission QoS and Energy Manager for Autonomous Mobile Robots A Computational Framework for Complementary Situational Awareness (CSA) in Surgical Assistant Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1