用于纳米级超大规模集成电路硅生命周期管理的片上电迁移传感器

M. Mayahinia, M. Tahoori, Grigor Tshagharyan, Gurgen Harutunyan, Y. Zorian
{"title":"用于纳米级超大规模集成电路硅生命周期管理的片上电迁移传感器","authors":"M. Mayahinia, M. Tahoori, Grigor Tshagharyan, Gurgen Harutunyan, Y. Zorian","doi":"10.1109/ETS56758.2023.10173993","DOIUrl":null,"url":null,"abstract":"The advanced CMOS technology with smaller feature sizes has greatly improved the performance, energy, and area efficiency of the VLSI systems. Alongside the transistor feature size, back-end-of-the-line (BEoL) interconnects are also shrinking which makes them susceptible to electromigration (EM). Current density and temperature have decisive impacts on the EM profile of the BEoL interconnects, which themselves are highly affected by the running workload. Hence, the actual degradation and the remaining lifetime of a VLSI system are impacted by its usage scenarios. Therefore, in-field monitoring of the chip usage can predict failures before they happen and cause catastrophic failures, and in addition, provide an accurate estimate of the remaining useful lifetime to schedule preventive maintenance. In this work, we propose a simple yet effective on-chip EM sensor that can be embedded as a part of chip silicon lifecycle management (SLM) infrastructure. Further, we show how our proposed EM sensor can be effectively leveraged as a general sensor for the estimation of the remaining useful lifetime of the chip. The simulation results for the 5nm realistic SRAM design show that the power overhead of the proposed sensor is only 0.00365% of the SRAM module with a negligible area overhead.","PeriodicalId":211522,"journal":{"name":"2023 IEEE European Test Symposium (ETS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-chip Electromigration Sensor for Silicon Lifecycle Management of Nanoscale VLSI\",\"authors\":\"M. Mayahinia, M. Tahoori, Grigor Tshagharyan, Gurgen Harutunyan, Y. Zorian\",\"doi\":\"10.1109/ETS56758.2023.10173993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advanced CMOS technology with smaller feature sizes has greatly improved the performance, energy, and area efficiency of the VLSI systems. Alongside the transistor feature size, back-end-of-the-line (BEoL) interconnects are also shrinking which makes them susceptible to electromigration (EM). Current density and temperature have decisive impacts on the EM profile of the BEoL interconnects, which themselves are highly affected by the running workload. Hence, the actual degradation and the remaining lifetime of a VLSI system are impacted by its usage scenarios. Therefore, in-field monitoring of the chip usage can predict failures before they happen and cause catastrophic failures, and in addition, provide an accurate estimate of the remaining useful lifetime to schedule preventive maintenance. In this work, we propose a simple yet effective on-chip EM sensor that can be embedded as a part of chip silicon lifecycle management (SLM) infrastructure. Further, we show how our proposed EM sensor can be effectively leveraged as a general sensor for the estimation of the remaining useful lifetime of the chip. The simulation results for the 5nm realistic SRAM design show that the power overhead of the proposed sensor is only 0.00365% of the SRAM module with a negligible area overhead.\",\"PeriodicalId\":211522,\"journal\":{\"name\":\"2023 IEEE European Test Symposium (ETS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE European Test Symposium (ETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETS56758.2023.10173993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS56758.2023.10173993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

先进的CMOS技术具有更小的特征尺寸,极大地提高了VLSI系统的性能、能量和面积效率。除了晶体管的特征尺寸,线后端(BEoL)互连也在缩小,这使得它们容易受到电迁移(EM)的影响。电流密度和温度对BEoL互连的电磁分布有决定性的影响,而电流密度和温度本身受工作负载的影响很大。因此,VLSI系统的实际退化和剩余寿命受到其使用场景的影响。因此,对芯片使用情况的现场监测可以在故障发生和导致灾难性故障之前预测故障,此外,还可以提供对剩余使用寿命的准确估计,以便安排预防性维护。在这项工作中,我们提出了一种简单而有效的片上电磁传感器,可以作为芯片硅生命周期管理(SLM)基础设施的一部分嵌入。此外,我们展示了如何有效地利用我们提出的电磁传感器作为通用传感器来估计芯片的剩余使用寿命。5nm真实SRAM设计的仿真结果表明,该传感器的功耗开销仅为SRAM模块的0.00365%,面积开销可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On-chip Electromigration Sensor for Silicon Lifecycle Management of Nanoscale VLSI
The advanced CMOS technology with smaller feature sizes has greatly improved the performance, energy, and area efficiency of the VLSI systems. Alongside the transistor feature size, back-end-of-the-line (BEoL) interconnects are also shrinking which makes them susceptible to electromigration (EM). Current density and temperature have decisive impacts on the EM profile of the BEoL interconnects, which themselves are highly affected by the running workload. Hence, the actual degradation and the remaining lifetime of a VLSI system are impacted by its usage scenarios. Therefore, in-field monitoring of the chip usage can predict failures before they happen and cause catastrophic failures, and in addition, provide an accurate estimate of the remaining useful lifetime to schedule preventive maintenance. In this work, we propose a simple yet effective on-chip EM sensor that can be embedded as a part of chip silicon lifecycle management (SLM) infrastructure. Further, we show how our proposed EM sensor can be effectively leveraged as a general sensor for the estimation of the remaining useful lifetime of the chip. The simulation results for the 5nm realistic SRAM design show that the power overhead of the proposed sensor is only 0.00365% of the SRAM module with a negligible area overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Counterfeit Detection by Semiconductor Process Technology Inspection Semi-Supervised Deep Learning for Microcontroller Performance Screening FINaL: Driving High-Level Fault Injection Campaigns with Natural Language Learn to Tune: Robust Performance Tuning in Post-Silicon Validation A Resilience Framework for Synapse Weight Errors and Firing Threshold Perturbations in RRAM Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1