{"title":"Computatıonal Algorıthm for the Numerıcal Solutıon of Systems of Volterra Integro-Dıfferentıal Equatıons","authors":"F. Iyanda, Tiamiyu Abdgafar Tunde","doi":"10.32861/ajams.66.66.76","DOIUrl":null,"url":null,"abstract":"In this paper, we employ variational iterative method (VIM) to develop a suitable Algorithm for the numerical solution of systems of Volterra integro-differential equations. The formulated algorithm is used to solve first and second order linear and nonlinear system of Volterra integrodifferential equations which demonstrated a good numerical approach to overcome lengthen computational and integral simplification involves. Moreover, the comparison of the exact solution with the approximated solutions are made and approximate solutions p(x) q(t) proved to converge to the exact solutions p(x) q(t) respectively. The results reveal that the formulated algorithm are simple, effective and faster than analytical approach of solving Volterra integro-differential equations.","PeriodicalId":375032,"journal":{"name":"Academic Journal of Applied Mathematical Sciences","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Applied Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32861/ajams.66.66.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computatıonal Algorıthm for the Numerıcal Solutıon of Systems of Volterra Integro-Dıfferentıal Equatıons
In this paper, we employ variational iterative method (VIM) to develop a suitable Algorithm for the numerical solution of systems of Volterra integro-differential equations. The formulated algorithm is used to solve first and second order linear and nonlinear system of Volterra integrodifferential equations which demonstrated a good numerical approach to overcome lengthen computational and integral simplification involves. Moreover, the comparison of the exact solution with the approximated solutions are made and approximate solutions p(x) q(t) proved to converge to the exact solutions p(x) q(t) respectively. The results reveal that the formulated algorithm are simple, effective and faster than analytical approach of solving Volterra integro-differential equations.