联机EHW模式识别系统的中间级FPGA重构

K. Glette, J. Tørresen, M. Høvin
{"title":"联机EHW模式识别系统的中间级FPGA重构","authors":"K. Glette, J. Tørresen, M. Høvin","doi":"10.1109/AHS.2009.46","DOIUrl":null,"url":null,"abstract":"We propose a field programmable gate array (FPGA) implementation for a run-time adaptable evolvable hardware classifier system. Previous implementations have been based on a high-level virtual reconfigurable circuit technique which requires many FPGA resources. We therefore apply an intermediate level reconfiguration technique which consists of using the FPGA lookup tables as shift registers for reconfiguration purposes. This leads to significant resource savings, reducing the classifier circuit size to less than one third of the original implementation. This in turn has made it possible to implement a larger, more accurate classifier than before, giving 97.5% recognition accuracy for a face image application. Experiments also show that a reduction of data element resolution can lead to further resource savings while still maintaining high classification accuracy.","PeriodicalId":318989,"journal":{"name":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Intermediate Level FPGA Reconfiguration for an Online EHW Pattern Recognition System\",\"authors\":\"K. Glette, J. Tørresen, M. Høvin\",\"doi\":\"10.1109/AHS.2009.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a field programmable gate array (FPGA) implementation for a run-time adaptable evolvable hardware classifier system. Previous implementations have been based on a high-level virtual reconfigurable circuit technique which requires many FPGA resources. We therefore apply an intermediate level reconfiguration technique which consists of using the FPGA lookup tables as shift registers for reconfiguration purposes. This leads to significant resource savings, reducing the classifier circuit size to less than one third of the original implementation. This in turn has made it possible to implement a larger, more accurate classifier than before, giving 97.5% recognition accuracy for a face image application. Experiments also show that a reduction of data element resolution can lead to further resource savings while still maintaining high classification accuracy.\",\"PeriodicalId\":318989,\"journal\":{\"name\":\"2009 NASA/ESA Conference on Adaptive Hardware and Systems\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 NASA/ESA Conference on Adaptive Hardware and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AHS.2009.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AHS.2009.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

我们提出了一种现场可编程门阵列(FPGA)实现一个运行时可适应的可进化硬件分类器系统。以前的实现基于高级虚拟可重构电路技术,这需要大量的FPGA资源。因此,我们应用了一种中间级重新配置技术,该技术包括使用FPGA查找表作为重新配置目的的移位寄存器。这大大节省了资源,将分类器电路的大小减少到不到原始实现的三分之一。这反过来又使得实现比以前更大、更准确的分类器成为可能,为人脸图像应用程序提供97.5%的识别精度。实验还表明,降低数据元素分辨率可以进一步节省资源,同时仍然保持较高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intermediate Level FPGA Reconfiguration for an Online EHW Pattern Recognition System
We propose a field programmable gate array (FPGA) implementation for a run-time adaptable evolvable hardware classifier system. Previous implementations have been based on a high-level virtual reconfigurable circuit technique which requires many FPGA resources. We therefore apply an intermediate level reconfiguration technique which consists of using the FPGA lookup tables as shift registers for reconfiguration purposes. This leads to significant resource savings, reducing the classifier circuit size to less than one third of the original implementation. This in turn has made it possible to implement a larger, more accurate classifier than before, giving 97.5% recognition accuracy for a face image application. Experiments also show that a reduction of data element resolution can lead to further resource savings while still maintaining high classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamically Adapted Low-Energy Fault Tolerant Processors Partial Bitstream 2-D Core Relocation for Reconfigurable Architectures Automated Wire Antennas Design using Dynamic Dominance Evolutionary Algorithm Adaptive Hardware Real-Time Task Scheduler of Multi-Core ATPA Environment Evolutionary Algorithms in Unreliable Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1