{"title":"联机EHW模式识别系统的中间级FPGA重构","authors":"K. Glette, J. Tørresen, M. Høvin","doi":"10.1109/AHS.2009.46","DOIUrl":null,"url":null,"abstract":"We propose a field programmable gate array (FPGA) implementation for a run-time adaptable evolvable hardware classifier system. Previous implementations have been based on a high-level virtual reconfigurable circuit technique which requires many FPGA resources. We therefore apply an intermediate level reconfiguration technique which consists of using the FPGA lookup tables as shift registers for reconfiguration purposes. This leads to significant resource savings, reducing the classifier circuit size to less than one third of the original implementation. This in turn has made it possible to implement a larger, more accurate classifier than before, giving 97.5% recognition accuracy for a face image application. Experiments also show that a reduction of data element resolution can lead to further resource savings while still maintaining high classification accuracy.","PeriodicalId":318989,"journal":{"name":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Intermediate Level FPGA Reconfiguration for an Online EHW Pattern Recognition System\",\"authors\":\"K. Glette, J. Tørresen, M. Høvin\",\"doi\":\"10.1109/AHS.2009.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a field programmable gate array (FPGA) implementation for a run-time adaptable evolvable hardware classifier system. Previous implementations have been based on a high-level virtual reconfigurable circuit technique which requires many FPGA resources. We therefore apply an intermediate level reconfiguration technique which consists of using the FPGA lookup tables as shift registers for reconfiguration purposes. This leads to significant resource savings, reducing the classifier circuit size to less than one third of the original implementation. This in turn has made it possible to implement a larger, more accurate classifier than before, giving 97.5% recognition accuracy for a face image application. Experiments also show that a reduction of data element resolution can lead to further resource savings while still maintaining high classification accuracy.\",\"PeriodicalId\":318989,\"journal\":{\"name\":\"2009 NASA/ESA Conference on Adaptive Hardware and Systems\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 NASA/ESA Conference on Adaptive Hardware and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AHS.2009.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AHS.2009.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intermediate Level FPGA Reconfiguration for an Online EHW Pattern Recognition System
We propose a field programmable gate array (FPGA) implementation for a run-time adaptable evolvable hardware classifier system. Previous implementations have been based on a high-level virtual reconfigurable circuit technique which requires many FPGA resources. We therefore apply an intermediate level reconfiguration technique which consists of using the FPGA lookup tables as shift registers for reconfiguration purposes. This leads to significant resource savings, reducing the classifier circuit size to less than one third of the original implementation. This in turn has made it possible to implement a larger, more accurate classifier than before, giving 97.5% recognition accuracy for a face image application. Experiments also show that a reduction of data element resolution can lead to further resource savings while still maintaining high classification accuracy.