使用智能手机进行室内定位

Rui Zhang, A. Bannoura, F. Hoflinger, L. Reindl, C. Schindelhauer
{"title":"使用智能手机进行室内定位","authors":"Rui Zhang, A. Bannoura, F. Hoflinger, L. Reindl, C. Schindelhauer","doi":"10.1109/SAS.2013.6493553","DOIUrl":null,"url":null,"abstract":"This paper presents a novel indoor localization solution using a smart phone. Instead of building the inertial measurement unit (IMU), the integrated calibrated sensors inside the smart phone provide all the sensor information needed. Meanwhile, we avoid the complicated calibration process, when the calibration machines or workstations are not available. Since smart phones are meant to be held in hand, algorithms and methods based on walking speed reset can not be utilized. Therefore, correct orientation and step length information are indispensable. In this study, a modified Kalman filter based sensor data fusion was used to achieve accurate orientation data by detecting and minimizing the effect of magnetic field disturbance. Three methods are presented and compared to calculate each step length based on vertical acceleration using biomechanic model or empirical relation. The experimental results show that the proposed solution is capable of tracking the person indoors and to achieve a tracking accuracy of less than 0.3m.","PeriodicalId":309610,"journal":{"name":"2013 IEEE Sensors Applications Symposium Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Indoor localization using a smart phone\",\"authors\":\"Rui Zhang, A. Bannoura, F. Hoflinger, L. Reindl, C. Schindelhauer\",\"doi\":\"10.1109/SAS.2013.6493553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel indoor localization solution using a smart phone. Instead of building the inertial measurement unit (IMU), the integrated calibrated sensors inside the smart phone provide all the sensor information needed. Meanwhile, we avoid the complicated calibration process, when the calibration machines or workstations are not available. Since smart phones are meant to be held in hand, algorithms and methods based on walking speed reset can not be utilized. Therefore, correct orientation and step length information are indispensable. In this study, a modified Kalman filter based sensor data fusion was used to achieve accurate orientation data by detecting and minimizing the effect of magnetic field disturbance. Three methods are presented and compared to calculate each step length based on vertical acceleration using biomechanic model or empirical relation. The experimental results show that the proposed solution is capable of tracking the person indoors and to achieve a tracking accuracy of less than 0.3m.\",\"PeriodicalId\":309610,\"journal\":{\"name\":\"2013 IEEE Sensors Applications Symposium Proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Sensors Applications Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS.2013.6493553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Sensors Applications Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2013.6493553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

本文提出了一种基于智能手机的室内定位解决方案。智能手机内部集成的校准传感器提供了所需的所有传感器信息,而不是建立惯性测量单元(IMU)。同时,避免了在没有定标机或工作站的情况下,繁琐的定标过程。因为智能手机是握在手里的,所以不能使用基于行走速度重置的算法和方法。因此,正确的方向和步长信息是必不可少的。在本研究中,基于改进卡尔曼滤波的传感器数据融合,通过检测和最小化磁场干扰的影响来获得准确的方向数据。提出了三种基于垂直加速度的步长计算方法,并用生物力学模型和经验关系式进行了比较。实验结果表明,该方案能够对室内人员进行跟踪,跟踪精度不超过0.3m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Indoor localization using a smart phone
This paper presents a novel indoor localization solution using a smart phone. Instead of building the inertial measurement unit (IMU), the integrated calibrated sensors inside the smart phone provide all the sensor information needed. Meanwhile, we avoid the complicated calibration process, when the calibration machines or workstations are not available. Since smart phones are meant to be held in hand, algorithms and methods based on walking speed reset can not be utilized. Therefore, correct orientation and step length information are indispensable. In this study, a modified Kalman filter based sensor data fusion was used to achieve accurate orientation data by detecting and minimizing the effect of magnetic field disturbance. Three methods are presented and compared to calculate each step length based on vertical acceleration using biomechanic model or empirical relation. The experimental results show that the proposed solution is capable of tracking the person indoors and to achieve a tracking accuracy of less than 0.3m.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy logic in heart rate and blood pressure measuring system Power supply energy optimization for ultra low-power wireless sensor nodes Ultra-wideband monitoring sensor with pattern recognition Instrumentation and automated control of aircraft leading edge temperature Energy savings of home growing plants by using daylight and LED
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1