基于惩罚距离的高斯混合模型分量数估计算法

Daming Zhang, Hui Guo, B. Luo
{"title":"基于惩罚距离的高斯混合模型分量数估计算法","authors":"Daming Zhang, Hui Guo, B. Luo","doi":"10.1109/ICNNSP.2008.4590397","DOIUrl":null,"url":null,"abstract":"The expectation-maximization (EM) algorithm is a popular approach for parameter estimation of finite mixture model (FMM). A drawback of this approach is that the number of components of the finite mixture model is not known in advance, nevertheless, it is a key issue for EM algorithms. In this paper, a penalized minimum matching distance-guided EM algorithm is discussed. Under the framework of Greedy EM, a fast and accurate algorithm for estimating the number of components of the Gaussian mixture model (GMM) is proposed. The performance of this algorithm is validated via simulative experiments of univariate and bivariate Gaussian mixture models.","PeriodicalId":250993,"journal":{"name":"2008 International Conference on Neural Networks and Signal Processing","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An algorithm for estimating number of components of Gaussian mixture model based on penalized distance\",\"authors\":\"Daming Zhang, Hui Guo, B. Luo\",\"doi\":\"10.1109/ICNNSP.2008.4590397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The expectation-maximization (EM) algorithm is a popular approach for parameter estimation of finite mixture model (FMM). A drawback of this approach is that the number of components of the finite mixture model is not known in advance, nevertheless, it is a key issue for EM algorithms. In this paper, a penalized minimum matching distance-guided EM algorithm is discussed. Under the framework of Greedy EM, a fast and accurate algorithm for estimating the number of components of the Gaussian mixture model (GMM) is proposed. The performance of this algorithm is validated via simulative experiments of univariate and bivariate Gaussian mixture models.\",\"PeriodicalId\":250993,\"journal\":{\"name\":\"2008 International Conference on Neural Networks and Signal Processing\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Neural Networks and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNNSP.2008.4590397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Neural Networks and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNSP.2008.4590397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

期望最大化算法是有限混合模型参数估计的一种常用方法。这种方法的缺点是有限混合模型的分量数量事先不知道,然而,这是EM算法的一个关键问题。本文讨论了一种惩罚最小匹配距离制导的电磁算法。在贪心EM框架下,提出了一种快速准确估计高斯混合模型(GMM)分量数的算法。通过单变量和二元高斯混合模型的仿真实验验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An algorithm for estimating number of components of Gaussian mixture model based on penalized distance
The expectation-maximization (EM) algorithm is a popular approach for parameter estimation of finite mixture model (FMM). A drawback of this approach is that the number of components of the finite mixture model is not known in advance, nevertheless, it is a key issue for EM algorithms. In this paper, a penalized minimum matching distance-guided EM algorithm is discussed. Under the framework of Greedy EM, a fast and accurate algorithm for estimating the number of components of the Gaussian mixture model (GMM) is proposed. The performance of this algorithm is validated via simulative experiments of univariate and bivariate Gaussian mixture models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the architecture of H.264 to H.264 homogeneous transcoding platform The study of signal simulation based on the passive radar seeker A blind super-resolution framework considering the sensor PSF Hyper chaos synchronization shift keying (HCSSK) modulation and demodulation in wireless communications An “out of head” sound field enhancement system for headphone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1