传感器网络中的移动扩散源跟踪

Xu Luo, Jun Yang
{"title":"传感器网络中的移动扩散源跟踪","authors":"Xu Luo, Jun Yang","doi":"10.1109/ICIEA.2017.8283168","DOIUrl":null,"url":null,"abstract":"Compared to the instantaneous mobile source tracking, the mobile diffusion source tracking is more difficult. In this paper, we give a study on the mobile diffusion source tracking in sensor networks. The CPA realtime localization method, the centroid realtime localization algorithm, the analytic realtime localization algorithm and the tracking method based on PF(Particle Filter) are presented to solve the mobile diffusion source tracking problem. The preconditions, advantages and deficiencies of the methods are given. The performances of different tracking methods are compared in simulations when node densities and sampling intervals are different. The results show that all the proposed methods are valid, while the tracking method based on PF is the most robust method compared to others.","PeriodicalId":443463,"journal":{"name":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mobile diffusion source tracking in sensor networks\",\"authors\":\"Xu Luo, Jun Yang\",\"doi\":\"10.1109/ICIEA.2017.8283168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared to the instantaneous mobile source tracking, the mobile diffusion source tracking is more difficult. In this paper, we give a study on the mobile diffusion source tracking in sensor networks. The CPA realtime localization method, the centroid realtime localization algorithm, the analytic realtime localization algorithm and the tracking method based on PF(Particle Filter) are presented to solve the mobile diffusion source tracking problem. The preconditions, advantages and deficiencies of the methods are given. The performances of different tracking methods are compared in simulations when node densities and sampling intervals are different. The results show that all the proposed methods are valid, while the tracking method based on PF is the most robust method compared to others.\",\"PeriodicalId\":443463,\"journal\":{\"name\":\"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2017.8283168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2017.8283168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

与瞬时移动源跟踪相比,移动扩散源跟踪更为困难。本文研究了传感器网络中移动扩散源的跟踪问题。针对移动扩散源的跟踪问题,提出了CPA实时定位算法、质心实时定位算法、解析实时定位算法和基于PF(Particle Filter)的跟踪方法。给出了这些方法的前提条件、优缺点。在节点密度和采样间隔不同的情况下,仿真比较了不同跟踪方法的性能。结果表明,所有方法都是有效的,其中基于PF的跟踪方法鲁棒性最强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mobile diffusion source tracking in sensor networks
Compared to the instantaneous mobile source tracking, the mobile diffusion source tracking is more difficult. In this paper, we give a study on the mobile diffusion source tracking in sensor networks. The CPA realtime localization method, the centroid realtime localization algorithm, the analytic realtime localization algorithm and the tracking method based on PF(Particle Filter) are presented to solve the mobile diffusion source tracking problem. The preconditions, advantages and deficiencies of the methods are given. The performances of different tracking methods are compared in simulations when node densities and sampling intervals are different. The results show that all the proposed methods are valid, while the tracking method based on PF is the most robust method compared to others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An evolutionary algorithm with 2-D encoding for image segmentation A neural network based place recognition technique for a crowded indoor environment Internet of Things (IoT) in E-commerce: For people with disabilities Predictive analytics for detecting sensor failure using autoregressive integrated moving average model Energy-controlled optimization algorithm for rechargeable unmanned aerial vehicle network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1