{"title":"基于太阳能PWM馈电的两相交错升压变换器的实现","authors":"Ritu, Nitin Verma, Shilpa Mishra, S. Shukla","doi":"10.1109/CCINTELS.2015.7437962","DOIUrl":null,"url":null,"abstract":"Renewable energy plays a dominant role in electricity production with the increase in global warning. Advantages like ENVIRONMENTAL friendliness, expandability and flexibility have made its wider application. Nowadays, step up power conversion is widely used in many applications and power capability demands. The applications of step up power conversion may be seen in electric vehicles, photovoltaic (PV) system, uninterruptable power supplies (UPS), and fuel cell power system. Boost converter is one type of DC-DC step up power converter. Step up power converters is quite popular because it can produce higher DC voltage output from low voltage input. In this paper, the analysis of interleaved boost converter is done by controlling with interleaved switching signals, which are having same switching frequency but shifted in phase. By utilizing the parallel operation of converters, the input current can be shared among the inductors so that high reliability and efficiency in power electronic systems can be obtained. Simulation study for PWM fed two phases IBC for solar cell has been implemented using MATLAB/ SIMULINK. The simulation results show the reduction in ripple quantity up to zero, which makes the operation of IBC to be more reliable and stable when it is utilized with solar cell.","PeriodicalId":131816,"journal":{"name":"2015 Communication, Control and Intelligent Systems (CCIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Implementation of solar based PWM fed two phase interleaved boost converter\",\"authors\":\"Ritu, Nitin Verma, Shilpa Mishra, S. Shukla\",\"doi\":\"10.1109/CCINTELS.2015.7437962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Renewable energy plays a dominant role in electricity production with the increase in global warning. Advantages like ENVIRONMENTAL friendliness, expandability and flexibility have made its wider application. Nowadays, step up power conversion is widely used in many applications and power capability demands. The applications of step up power conversion may be seen in electric vehicles, photovoltaic (PV) system, uninterruptable power supplies (UPS), and fuel cell power system. Boost converter is one type of DC-DC step up power converter. Step up power converters is quite popular because it can produce higher DC voltage output from low voltage input. In this paper, the analysis of interleaved boost converter is done by controlling with interleaved switching signals, which are having same switching frequency but shifted in phase. By utilizing the parallel operation of converters, the input current can be shared among the inductors so that high reliability and efficiency in power electronic systems can be obtained. Simulation study for PWM fed two phases IBC for solar cell has been implemented using MATLAB/ SIMULINK. The simulation results show the reduction in ripple quantity up to zero, which makes the operation of IBC to be more reliable and stable when it is utilized with solar cell.\",\"PeriodicalId\":131816,\"journal\":{\"name\":\"2015 Communication, Control and Intelligent Systems (CCIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Communication, Control and Intelligent Systems (CCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCINTELS.2015.7437962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Communication, Control and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCINTELS.2015.7437962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementation of solar based PWM fed two phase interleaved boost converter
Renewable energy plays a dominant role in electricity production with the increase in global warning. Advantages like ENVIRONMENTAL friendliness, expandability and flexibility have made its wider application. Nowadays, step up power conversion is widely used in many applications and power capability demands. The applications of step up power conversion may be seen in electric vehicles, photovoltaic (PV) system, uninterruptable power supplies (UPS), and fuel cell power system. Boost converter is one type of DC-DC step up power converter. Step up power converters is quite popular because it can produce higher DC voltage output from low voltage input. In this paper, the analysis of interleaved boost converter is done by controlling with interleaved switching signals, which are having same switching frequency but shifted in phase. By utilizing the parallel operation of converters, the input current can be shared among the inductors so that high reliability and efficiency in power electronic systems can be obtained. Simulation study for PWM fed two phases IBC for solar cell has been implemented using MATLAB/ SIMULINK. The simulation results show the reduction in ripple quantity up to zero, which makes the operation of IBC to be more reliable and stable when it is utilized with solar cell.