{"title":"在油门踏板上设计触觉效果以支持积极的生态驾驶体验","authors":"Alex de Ruiter, M. B. Alonso","doi":"10.1145/3342197.3344532","DOIUrl":null,"url":null,"abstract":"Haptic feedback has frequently been proposed as a means to support eco-driving behaviour. While force and vibrotactile feedback have proven to be effective and safe approaches, no studies were found that assessed the user experience of different feedback designs. We describe the design of six haptic effects which were implemented in a custom designed accelerator pedal. The user experience of three effects (linear force increase, bump and pulse) were assessed in a driving simulator and compared to a baseline with no feedback. Results show that the haptic pedal effects were rated positively on attractiveness, dependability, stimulation and novelty. The pulsating effect scored significantly lower on attractiveness and dependability but highest on the novelty. Qualitative results suggest that combining a bump and pulse could increase the positive experience of a haptic pedal. Consequently, we argue for more experiential approaches to haptic feedback design in accelerator pedals.","PeriodicalId":244325,"journal":{"name":"Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Designing Haptic Effects on an Accelerator Pedal to Support a Positive Eco-Driving Experience\",\"authors\":\"Alex de Ruiter, M. B. Alonso\",\"doi\":\"10.1145/3342197.3344532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Haptic feedback has frequently been proposed as a means to support eco-driving behaviour. While force and vibrotactile feedback have proven to be effective and safe approaches, no studies were found that assessed the user experience of different feedback designs. We describe the design of six haptic effects which were implemented in a custom designed accelerator pedal. The user experience of three effects (linear force increase, bump and pulse) were assessed in a driving simulator and compared to a baseline with no feedback. Results show that the haptic pedal effects were rated positively on attractiveness, dependability, stimulation and novelty. The pulsating effect scored significantly lower on attractiveness and dependability but highest on the novelty. Qualitative results suggest that combining a bump and pulse could increase the positive experience of a haptic pedal. Consequently, we argue for more experiential approaches to haptic feedback design in accelerator pedals.\",\"PeriodicalId\":244325,\"journal\":{\"name\":\"Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3342197.3344532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3342197.3344532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Designing Haptic Effects on an Accelerator Pedal to Support a Positive Eco-Driving Experience
Haptic feedback has frequently been proposed as a means to support eco-driving behaviour. While force and vibrotactile feedback have proven to be effective and safe approaches, no studies were found that assessed the user experience of different feedback designs. We describe the design of six haptic effects which were implemented in a custom designed accelerator pedal. The user experience of three effects (linear force increase, bump and pulse) were assessed in a driving simulator and compared to a baseline with no feedback. Results show that the haptic pedal effects were rated positively on attractiveness, dependability, stimulation and novelty. The pulsating effect scored significantly lower on attractiveness and dependability but highest on the novelty. Qualitative results suggest that combining a bump and pulse could increase the positive experience of a haptic pedal. Consequently, we argue for more experiential approaches to haptic feedback design in accelerator pedals.