Haimonti Dutta, D. Waltz, Karthik M. Ramasamy, Philip Gross, Ansaf Salleb-Aouissi, H. Diab, Manoj Pooleery, C. Schevon, R. Emerson
{"title":"基于高维聚类的颅内脑电图患者特异性癫痫检测","authors":"Haimonti Dutta, D. Waltz, Karthik M. Ramasamy, Philip Gross, Ansaf Salleb-Aouissi, H. Diab, Manoj Pooleery, C. Schevon, R. Emerson","doi":"10.1109/ICMLA.2010.119","DOIUrl":null,"url":null,"abstract":"Automatic seizure detection is becoming popular in modern epilepsy monitoring units since it assists diagnostic monitoring and reduces manual review of large volumes of EEG recordings. In this paper, we describe the application of machine learning algorithms for building patient-specific seizure detectors on multiple frequency bands of intra-cranial electroencephalogram (iEEG) recorded by a dense Micro-Electrode Array (MEA). The MEA is capable of recording at a very high sampling rate (30 KHz) producing an avalanche of time series data. We explore subsets of this data to build seizure detectors – we discuss several methods for extracting univariate and bivariate features from the channels and study the effectiveness of using high dimensional clustering algorithms such as K-means and Subspace clustering for constructing the model. Future work involves design of more robust seizure detectors using other features and non-parametric clustering techniques, detection of artifacts and understanding the generalization properties of the models.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Patient-Specific Seizure Detection from Intra-cranial EEG Using High Dimensional Clustering\",\"authors\":\"Haimonti Dutta, D. Waltz, Karthik M. Ramasamy, Philip Gross, Ansaf Salleb-Aouissi, H. Diab, Manoj Pooleery, C. Schevon, R. Emerson\",\"doi\":\"10.1109/ICMLA.2010.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic seizure detection is becoming popular in modern epilepsy monitoring units since it assists diagnostic monitoring and reduces manual review of large volumes of EEG recordings. In this paper, we describe the application of machine learning algorithms for building patient-specific seizure detectors on multiple frequency bands of intra-cranial electroencephalogram (iEEG) recorded by a dense Micro-Electrode Array (MEA). The MEA is capable of recording at a very high sampling rate (30 KHz) producing an avalanche of time series data. We explore subsets of this data to build seizure detectors – we discuss several methods for extracting univariate and bivariate features from the channels and study the effectiveness of using high dimensional clustering algorithms such as K-means and Subspace clustering for constructing the model. Future work involves design of more robust seizure detectors using other features and non-parametric clustering techniques, detection of artifacts and understanding the generalization properties of the models.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Patient-Specific Seizure Detection from Intra-cranial EEG Using High Dimensional Clustering
Automatic seizure detection is becoming popular in modern epilepsy monitoring units since it assists diagnostic monitoring and reduces manual review of large volumes of EEG recordings. In this paper, we describe the application of machine learning algorithms for building patient-specific seizure detectors on multiple frequency bands of intra-cranial electroencephalogram (iEEG) recorded by a dense Micro-Electrode Array (MEA). The MEA is capable of recording at a very high sampling rate (30 KHz) producing an avalanche of time series data. We explore subsets of this data to build seizure detectors – we discuss several methods for extracting univariate and bivariate features from the channels and study the effectiveness of using high dimensional clustering algorithms such as K-means and Subspace clustering for constructing the model. Future work involves design of more robust seizure detectors using other features and non-parametric clustering techniques, detection of artifacts and understanding the generalization properties of the models.