基于进化算法的Neocognitron分级训练

Z. Pan, T. Sabisch, R. Adams, H. Bolouri
{"title":"基于进化算法的Neocognitron分级训练","authors":"Z. Pan, T. Sabisch, R. Adams, H. Bolouri","doi":"10.1109/CEC.1999.785515","DOIUrl":null,"url":null,"abstract":"The Neocognitron, inspired by the mammalian visual system, is a complex neural network with numerous parameters and weights which should be trained in order to utilise it for pattern recognition. However, it is not easy to optimise these parameters and weights by gradient decent algorithms. We present a staged training approach using evolutionary algorithms. The experiments demonstrate that evolutionary algorithms can successfully train the Neocognitron to perform image recognition on real world problems.","PeriodicalId":292523,"journal":{"name":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Staged training of Neocognitron by evolutionary algorithms\",\"authors\":\"Z. Pan, T. Sabisch, R. Adams, H. Bolouri\",\"doi\":\"10.1109/CEC.1999.785515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Neocognitron, inspired by the mammalian visual system, is a complex neural network with numerous parameters and weights which should be trained in order to utilise it for pattern recognition. However, it is not easy to optimise these parameters and weights by gradient decent algorithms. We present a staged training approach using evolutionary algorithms. The experiments demonstrate that evolutionary algorithms can successfully train the Neocognitron to perform image recognition on real world problems.\",\"PeriodicalId\":292523,\"journal\":{\"name\":\"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.1999.785515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.1999.785515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

Neocognitron受哺乳动物视觉系统的启发,是一个复杂的神经网络,具有许多参数和权重,需要训练才能利用它进行模式识别。然而,通过梯度优化算法来优化这些参数和权重并不容易。我们提出了一种使用进化算法的分阶段训练方法。实验表明,进化算法可以成功地训练Neocognitron对现实世界的问题进行图像识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Staged training of Neocognitron by evolutionary algorithms
The Neocognitron, inspired by the mammalian visual system, is a complex neural network with numerous parameters and weights which should be trained in order to utilise it for pattern recognition. However, it is not easy to optimise these parameters and weights by gradient decent algorithms. We present a staged training approach using evolutionary algorithms. The experiments demonstrate that evolutionary algorithms can successfully train the Neocognitron to perform image recognition on real world problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of a characteristic bimodal convergence-time/mutation-rate feature in evolutionary search Classifier systems evolving multi-agent system with distributed elitism A unified model of non-panmictic population structures in evolutionary algorithms Control of autonomous robots using fuzzy logic controllers tuned by genetic algorithms Oil reservoir production forecasting with uncertainty estimation using genetic algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1