移动用户毫米波信号随机框架:实验、建模及其在波束跟踪中的应用

Yawen Fan, Jingchao Li, Husheng Li, Chao Tian
{"title":"移动用户毫米波信号随机框架:实验、建模及其在波束跟踪中的应用","authors":"Yawen Fan, Jingchao Li, Husheng Li, Chao Tian","doi":"10.1109/GSMM.2018.8439186","DOIUrl":null,"url":null,"abstract":"In this paper, we propose to employ the Markov jump linear system to model the characteristics of millimeter wave (mmWave) signals, such as signal strength and angle-of-arrival (AoA), for mobile users. We integrate the spatial correlation between line-of-sight (LoS) and none-line-of-sight (NLoS) beams to the stochastic framework for better modeling mmWave. To handle the channel dynamics in mmWave communications, we derive a Markov gain-state channel model based on channel measurements in an indoor environment from our field measurement. The proposed stochastic model is used to estimate the transition probability of each channel. Then it is integrated into the Markov jump linear system framework to construct the linear estimator for channel variables, such as AoA and channel gain. The simulation result demonstrates the outperformance of the proposed framework against the previous Kalman-filtering-based tracking algorithm.","PeriodicalId":441407,"journal":{"name":"2018 11th Global Symposium on Millimeter Waves (GSMM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Stochastic Framework of Millimeter Wave Signal for Mobile Users: Experiment, Modeling and Application in Beam Tracking\",\"authors\":\"Yawen Fan, Jingchao Li, Husheng Li, Chao Tian\",\"doi\":\"10.1109/GSMM.2018.8439186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose to employ the Markov jump linear system to model the characteristics of millimeter wave (mmWave) signals, such as signal strength and angle-of-arrival (AoA), for mobile users. We integrate the spatial correlation between line-of-sight (LoS) and none-line-of-sight (NLoS) beams to the stochastic framework for better modeling mmWave. To handle the channel dynamics in mmWave communications, we derive a Markov gain-state channel model based on channel measurements in an indoor environment from our field measurement. The proposed stochastic model is used to estimate the transition probability of each channel. Then it is integrated into the Markov jump linear system framework to construct the linear estimator for channel variables, such as AoA and channel gain. The simulation result demonstrates the outperformance of the proposed framework against the previous Kalman-filtering-based tracking algorithm.\",\"PeriodicalId\":441407,\"journal\":{\"name\":\"2018 11th Global Symposium on Millimeter Waves (GSMM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 11th Global Symposium on Millimeter Waves (GSMM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GSMM.2018.8439186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th Global Symposium on Millimeter Waves (GSMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSMM.2018.8439186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们建议使用马尔可夫跳变线性系统来模拟毫米波(mmWave)信号的特性,如信号强度和到达角(AoA),用于移动用户。我们将视线(LoS)和非视线(NLoS)波束之间的空间相关性整合到随机框架中,以便更好地建模毫米波。为了处理毫米波通信中的信道动态,我们从现场测量中导出了基于室内环境中信道测量的马尔可夫增益状态信道模型。提出的随机模型用于估计每个信道的转移概率。然后将其集成到马尔可夫跳变线性系统框架中,构造信道方差和信道增益等信道变量的线性估计器。仿真结果表明,该框架相对于先前基于卡尔曼滤波的跟踪算法具有优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Stochastic Framework of Millimeter Wave Signal for Mobile Users: Experiment, Modeling and Application in Beam Tracking
In this paper, we propose to employ the Markov jump linear system to model the characteristics of millimeter wave (mmWave) signals, such as signal strength and angle-of-arrival (AoA), for mobile users. We integrate the spatial correlation between line-of-sight (LoS) and none-line-of-sight (NLoS) beams to the stochastic framework for better modeling mmWave. To handle the channel dynamics in mmWave communications, we derive a Markov gain-state channel model based on channel measurements in an indoor environment from our field measurement. The proposed stochastic model is used to estimate the transition probability of each channel. Then it is integrated into the Markov jump linear system framework to construct the linear estimator for channel variables, such as AoA and channel gain. The simulation result demonstrates the outperformance of the proposed framework against the previous Kalman-filtering-based tracking algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Micromachined Dielectric and Metallic Waveguides for THz applications An Efficient Hybrid Diagonalization for Multiuser mmWave Massive MIMO Systems 26 GHz-Band Direct Digital Signal Generation by a Manchester Coding 1-Bit Band-Pass Delta-Sigma Modulator using It's 7th Nyquist Zone 64-Element 28 Gigahertz Phased Array 5G Prototyping Platform 57 GHz 130 uW CMOS Millimeter-Wave Oscillator for Ultra Low Power Sensor Node
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1