利用流动可视化和瑞利光散射技术在快速化学气相沉积反应器中的流动状态和转变

Angelo G. Mathews, J. Peterson
{"title":"利用流动可视化和瑞利光散射技术在快速化学气相沉积反应器中的流动状态和转变","authors":"Angelo G. Mathews, J. Peterson","doi":"10.1115/imece2000-1479","DOIUrl":null,"url":null,"abstract":"\n Previous study of carrier gas flow in rapid chemical vapor deposition (RCVD) reactors has been limited mostly to numerical simulations and flow visualizations. In the present work flow regimes were observed and temperatures were measured in a vertical axisymmetric pedestal RCVD reactor using flow visualization and Rayleigh light scattering (RLS) for noninvasive temperature measurement. Flow visualizations revealed that the flow undergoes complex transitions between stable flow regimes as heating occurs. The two dominant stable flow regimes were buoyant stable (BS) and momentum stable (MS). RLS was used to determine the instantaneous carrier gas temperature at discrete points in the test section. The flow regimes and their transition points were easily recognized and agreed with flow visualization data. The flow visualizations and RLS tests showed identifiable trends in transition points between flow regimes and in the types of regimes encountered. These trends were dependent on Grashof number and Reynolds number.","PeriodicalId":306962,"journal":{"name":"Heat Transfer: Volume 3","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow Regimes and Transitions in a Rapid Chemical Vapor Deposition Reactor Using Flow Visualization and Rayleigh Light Scattering\",\"authors\":\"Angelo G. Mathews, J. Peterson\",\"doi\":\"10.1115/imece2000-1479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Previous study of carrier gas flow in rapid chemical vapor deposition (RCVD) reactors has been limited mostly to numerical simulations and flow visualizations. In the present work flow regimes were observed and temperatures were measured in a vertical axisymmetric pedestal RCVD reactor using flow visualization and Rayleigh light scattering (RLS) for noninvasive temperature measurement. Flow visualizations revealed that the flow undergoes complex transitions between stable flow regimes as heating occurs. The two dominant stable flow regimes were buoyant stable (BS) and momentum stable (MS). RLS was used to determine the instantaneous carrier gas temperature at discrete points in the test section. The flow regimes and their transition points were easily recognized and agreed with flow visualization data. The flow visualizations and RLS tests showed identifiable trends in transition points between flow regimes and in the types of regimes encountered. These trends were dependent on Grashof number and Reynolds number.\",\"PeriodicalId\":306962,\"journal\":{\"name\":\"Heat Transfer: Volume 3\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer: Volume 3\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-1479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以往对快速化学气相沉积(RCVD)反应器载气流动的研究大多局限于数值模拟和流动可视化。利用流动显示和瑞利光散射(RLS)技术进行无创温度测量,在立式轴对称基座RCVD反应器中观察了工作流程并测量了温度。流动可视化显示,随着加热的发生,流动在稳定流动状态之间经历了复杂的转变。两种主要的稳定流型是浮力稳定流(BS)和动量稳定流(MS)。RLS用于确定测试段离散点的瞬时载气温度。流型及其过渡点易于识别并与流动可视化数据相一致。流动可视化和RLS测试显示了流动型之间的过渡点和遇到的流型类型的可识别趋势。这些趋势依赖于格拉索夫数和雷诺数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flow Regimes and Transitions in a Rapid Chemical Vapor Deposition Reactor Using Flow Visualization and Rayleigh Light Scattering
Previous study of carrier gas flow in rapid chemical vapor deposition (RCVD) reactors has been limited mostly to numerical simulations and flow visualizations. In the present work flow regimes were observed and temperatures were measured in a vertical axisymmetric pedestal RCVD reactor using flow visualization and Rayleigh light scattering (RLS) for noninvasive temperature measurement. Flow visualizations revealed that the flow undergoes complex transitions between stable flow regimes as heating occurs. The two dominant stable flow regimes were buoyant stable (BS) and momentum stable (MS). RLS was used to determine the instantaneous carrier gas temperature at discrete points in the test section. The flow regimes and their transition points were easily recognized and agreed with flow visualization data. The flow visualizations and RLS tests showed identifiable trends in transition points between flow regimes and in the types of regimes encountered. These trends were dependent on Grashof number and Reynolds number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heat Transfer Characteristics of Single Droplet Cooling Using a Microscale Heater Array Thermal Modeling for the Consolidation Process of Thermoplastic Composite Filament Winding Parametric Study of the Ablation Characteristics of Absorbing Dielectrics by Short Pulse Laser A Numerical Analysis of Gas Turbine Disks Incorporating Rotating Heat Pipes Neural Network Modeling of Molecular Beam Epitaxy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1