固态变压器中同步整流LLC变流器轻载效率的提高

Chih-Shen Yeh, Lanhua Zhang, Jung-Muk Choe, Cheng-Wei Chen, O. Yu, J. Lai
{"title":"固态变压器中同步整流LLC变流器轻载效率的提高","authors":"Chih-Shen Yeh, Lanhua Zhang, Jung-Muk Choe, Cheng-Wei Chen, O. Yu, J. Lai","doi":"10.1109/APEC.2018.8341313","DOIUrl":null,"url":null,"abstract":"Synchronous rectification technique can reduce secondary-side conduction loss of the LLC resonant converter. Typically, the control of synchronous rectifier (SR) relies on either voltage or current information; however, the detection circuit is sensitive to parasitic effects and high frequency noises. Since reliability is among top priorities in solid-state transformer application, open-loop controlled scheme becomes advantageous. Unfortunately, secondary-side current of LLC converter reaches zero-crossing-point (ZCP) earlier at light-load condition and the SR signal could turn off after ZCP. In that case, high circulating current appears in the secondary side and dramatically deteriorate efficiency. Therefore, a tuning method utilizing external primary-side output capacitor and dead-time extension is proposed to avoid late turn-off issue of open-loop controlled scheme. In this paper, the cause of ZCP shifting and late turn-off issue are explained first. Then a model for dead-time transient of LLC converter is derived as the theoretical basis of proposed tuning method. Finally, hardware testing results of a 4-kW LLC converter module are presented. With the proposed tuning method, the open-loop controlled synchronous rectification can improve the efficiency of the LLC converter module even at light-load condition.","PeriodicalId":113756,"journal":{"name":"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Light-load efficiency improvement for LLC converter with synchronous rectification in solid-state transformer application\",\"authors\":\"Chih-Shen Yeh, Lanhua Zhang, Jung-Muk Choe, Cheng-Wei Chen, O. Yu, J. Lai\",\"doi\":\"10.1109/APEC.2018.8341313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synchronous rectification technique can reduce secondary-side conduction loss of the LLC resonant converter. Typically, the control of synchronous rectifier (SR) relies on either voltage or current information; however, the detection circuit is sensitive to parasitic effects and high frequency noises. Since reliability is among top priorities in solid-state transformer application, open-loop controlled scheme becomes advantageous. Unfortunately, secondary-side current of LLC converter reaches zero-crossing-point (ZCP) earlier at light-load condition and the SR signal could turn off after ZCP. In that case, high circulating current appears in the secondary side and dramatically deteriorate efficiency. Therefore, a tuning method utilizing external primary-side output capacitor and dead-time extension is proposed to avoid late turn-off issue of open-loop controlled scheme. In this paper, the cause of ZCP shifting and late turn-off issue are explained first. Then a model for dead-time transient of LLC converter is derived as the theoretical basis of proposed tuning method. Finally, hardware testing results of a 4-kW LLC converter module are presented. With the proposed tuning method, the open-loop controlled synchronous rectification can improve the efficiency of the LLC converter module even at light-load condition.\",\"PeriodicalId\":113756,\"journal\":{\"name\":\"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.2018.8341313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2018.8341313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

同步整流技术可以降低LLC谐振变换器的二次侧导通损耗。通常,同步整流器(SR)的控制依赖于电压或电流信息;然而,检测电路对寄生效应和高频噪声很敏感。由于可靠性是固态变压器应用的重中之重,开环控制方案变得更加有利。然而,在轻载情况下,LLC变换器的二次侧电流较早达到过零交叉点(ZCP),过了过零交叉点后SR信号可能会关断。在这种情况下,二次侧出现了较大的循环电流,大大降低了效率。为此,提出了一种利用外部一次侧输出电容和死区扩展的调谐方法,以避免开环控制方案的迟关断问题。本文首先分析了ZCP移位和延迟关断问题的原因。推导了有限责任公司变换器的死时暂态模型,作为该调谐方法的理论基础。最后给出了一个4kw LLC变换器模块的硬件测试结果。采用所提出的整定方法,即使在轻载情况下,开环控制同步整流也能提高LLC变换器模块的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Light-load efficiency improvement for LLC converter with synchronous rectification in solid-state transformer application
Synchronous rectification technique can reduce secondary-side conduction loss of the LLC resonant converter. Typically, the control of synchronous rectifier (SR) relies on either voltage or current information; however, the detection circuit is sensitive to parasitic effects and high frequency noises. Since reliability is among top priorities in solid-state transformer application, open-loop controlled scheme becomes advantageous. Unfortunately, secondary-side current of LLC converter reaches zero-crossing-point (ZCP) earlier at light-load condition and the SR signal could turn off after ZCP. In that case, high circulating current appears in the secondary side and dramatically deteriorate efficiency. Therefore, a tuning method utilizing external primary-side output capacitor and dead-time extension is proposed to avoid late turn-off issue of open-loop controlled scheme. In this paper, the cause of ZCP shifting and late turn-off issue are explained first. Then a model for dead-time transient of LLC converter is derived as the theoretical basis of proposed tuning method. Finally, hardware testing results of a 4-kW LLC converter module are presented. With the proposed tuning method, the open-loop controlled synchronous rectification can improve the efficiency of the LLC converter module even at light-load condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Duty phase shift technique for extended-duty-ratio boost converter for reducing device voltage stress over wider operating range Reliability evaluation of an impedance-source PV microconverter A hybrid flyback LED driver with utility grid and renewable energy interface A transformerless single-phase symmetrical Z-source HERIC inverter with reduced leakage currents for PV systems A carrier magnitude varying modulation for distributed static series compensator to achieve a maximum reactive power generating capability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1