跨声速轴流压气机级环境动叶优化

Jinxin Cheng, Jiang Chen, Hang Xiang
{"title":"跨声速轴流压气机级环境动叶优化","authors":"Jinxin Cheng, Jiang Chen, Hang Xiang","doi":"10.1109/ICIEA.2017.8283126","DOIUrl":null,"url":null,"abstract":"Construct optimization platform. Adopt artificial neural network approximate model with global and local combinatorial optimization method. Then optimize the rotor of transonic axial flow compressor Stage35 in stage circumstance. The optimization variables are axial movement distance, circumference movement distance and the stagger angle of the hub, middle and tip section. With control of the mass flow and the pressure ratio, maximum efficiency is set as the optimization goal, the result is reached as the margin remains unchanged and the adiabatic efficiency increases by 0.3% over the whole range of incidence conditions at the designed rotation speed.","PeriodicalId":443463,"journal":{"name":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of rotor blade in stage circumstance for transonic axial flow compressor\",\"authors\":\"Jinxin Cheng, Jiang Chen, Hang Xiang\",\"doi\":\"10.1109/ICIEA.2017.8283126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Construct optimization platform. Adopt artificial neural network approximate model with global and local combinatorial optimization method. Then optimize the rotor of transonic axial flow compressor Stage35 in stage circumstance. The optimization variables are axial movement distance, circumference movement distance and the stagger angle of the hub, middle and tip section. With control of the mass flow and the pressure ratio, maximum efficiency is set as the optimization goal, the result is reached as the margin remains unchanged and the adiabatic efficiency increases by 0.3% over the whole range of incidence conditions at the designed rotation speed.\",\"PeriodicalId\":443463,\"journal\":{\"name\":\"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2017.8283126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2017.8283126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

构建优化平台。采用人工神经网络近似模型,结合全局和局部组合优化方法。然后对跨声速轴流压气机Stage35在二级工况下的转子进行了优化设计。优化变量为轴向运动距离、周向运动距离以及轮毂、中间和叶尖截面的错开角。在控制质量流量和压力比的情况下,以效率最大化为优化目标,在保持余量不变的情况下,在设计转速下,整个入射工况范围内的绝热效率提高了0.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of rotor blade in stage circumstance for transonic axial flow compressor
Construct optimization platform. Adopt artificial neural network approximate model with global and local combinatorial optimization method. Then optimize the rotor of transonic axial flow compressor Stage35 in stage circumstance. The optimization variables are axial movement distance, circumference movement distance and the stagger angle of the hub, middle and tip section. With control of the mass flow and the pressure ratio, maximum efficiency is set as the optimization goal, the result is reached as the margin remains unchanged and the adiabatic efficiency increases by 0.3% over the whole range of incidence conditions at the designed rotation speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An evolutionary algorithm with 2-D encoding for image segmentation A neural network based place recognition technique for a crowded indoor environment Internet of Things (IoT) in E-commerce: For people with disabilities Predictive analytics for detecting sensor failure using autoregressive integrated moving average model Energy-controlled optimization algorithm for rechargeable unmanned aerial vehicle network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1