稀疏自适应记忆与手写数字识别

B. Flachs, M. Flynn
{"title":"稀疏自适应记忆与手写数字识别","authors":"B. Flachs, M. Flynn","doi":"10.1109/ICNN.1994.374336","DOIUrl":null,"url":null,"abstract":"Pattern recognition is a budding field with many possible approaches. This article describes sparse adaptive memory (SARI), an associative memory built upon the strengths of Parzen classifiers, nearest neighbor classifiers, feedforward neural networks, and is related to learning vector quantization. A key feature of this learning architecture is the ability to adaptively change its prototype patterns in addition to its output mapping. As SAM changes the prototype patterns in the list, it isolates modes in the density functions to produce a classifier that is in some senses optimal. Some very important interactions of gradient descent learning are exposed, providing conditions under which gradient descent will converge to an admissible solution in an associative memory structure. A layer of learning heuristics can be built upon the basic gradient descent learning algorithm to improve memory efficiency in terms of error rate, and therefore hardware requirements. A simulation study examines the effects of one such heuristic in the context of handwritten digit recognition.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse adaptive memory and handwritten digit recognition\",\"authors\":\"B. Flachs, M. Flynn\",\"doi\":\"10.1109/ICNN.1994.374336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pattern recognition is a budding field with many possible approaches. This article describes sparse adaptive memory (SARI), an associative memory built upon the strengths of Parzen classifiers, nearest neighbor classifiers, feedforward neural networks, and is related to learning vector quantization. A key feature of this learning architecture is the ability to adaptively change its prototype patterns in addition to its output mapping. As SAM changes the prototype patterns in the list, it isolates modes in the density functions to produce a classifier that is in some senses optimal. Some very important interactions of gradient descent learning are exposed, providing conditions under which gradient descent will converge to an admissible solution in an associative memory structure. A layer of learning heuristics can be built upon the basic gradient descent learning algorithm to improve memory efficiency in terms of error rate, and therefore hardware requirements. A simulation study examines the effects of one such heuristic in the context of handwritten digit recognition.<<ETX>>\",\"PeriodicalId\":209128,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1994.374336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

模式识别是一个新兴的领域,有许多可能的方法。本文描述了稀疏自适应记忆(SARI),这是一种建立在Parzen分类器、最近邻分类器、前馈神经网络的优势之上的联想记忆,与学习向量量化有关。这种学习体系结构的一个关键特性是能够自适应地更改其原型模式以及输出映射。当SAM改变列表中的原型模式时,它会隔离密度函数中的模式,从而产生某种意义上最优的分类器。揭示了梯度下降学习的一些非常重要的相互作用,提供了梯度下降收敛到联想记忆结构的可接受解的条件。可以在基本梯度下降学习算法的基础上构建一层学习启发式,以提高内存效率(错误率),从而降低硬件要求。一项模拟研究检验了这种启发式在手写数字识别中的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse adaptive memory and handwritten digit recognition
Pattern recognition is a budding field with many possible approaches. This article describes sparse adaptive memory (SARI), an associative memory built upon the strengths of Parzen classifiers, nearest neighbor classifiers, feedforward neural networks, and is related to learning vector quantization. A key feature of this learning architecture is the ability to adaptively change its prototype patterns in addition to its output mapping. As SAM changes the prototype patterns in the list, it isolates modes in the density functions to produce a classifier that is in some senses optimal. Some very important interactions of gradient descent learning are exposed, providing conditions under which gradient descent will converge to an admissible solution in an associative memory structure. A layer of learning heuristics can be built upon the basic gradient descent learning algorithm to improve memory efficiency in terms of error rate, and therefore hardware requirements. A simulation study examines the effects of one such heuristic in the context of handwritten digit recognition.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1