{"title":"变电站局部放电脉冲噪声及其对2.4 GHz和915 MHz ZigBee通信的影响","authors":"Jia Jia, J. Meng","doi":"10.1109/PESMG.2013.6672249","DOIUrl":null,"url":null,"abstract":"An investigation of the performance of ZigBee systems in high voltage electricity substations is described in this paper. The ZigBee wireless platform is a cost-efficient wireless networking system recently for the purpose of monitoring substation components in electric substations. Although this system has some inherent resistance to interference given its spread spectrum technology, impulsive noise with a short duration and a strong energy content caused by partial discharge (PD) of a dielectric breakdown can degrade the communication quality of ZigBee nodes. In this paper, a novel statistical model of substation PD impulsive noise is proposed and the impact of this impulsive noise on the ZigBee 2.4 GHz and 915 MHz frequency bands is evaluated. Although our results show the 2.4 GHz ZigBee is more resistant to PD impulsive noise in electricity substations, it may be advantageous to deploy 915 MHz ZigBee if PD detection and concurrent telemetry data collection are desired.","PeriodicalId":433870,"journal":{"name":"2013 IEEE Power & Energy Society General Meeting","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Partial discharge impulsive noise in electricity substations and the impact on 2.4 GHz and 915 MHz ZigBee communications\",\"authors\":\"Jia Jia, J. Meng\",\"doi\":\"10.1109/PESMG.2013.6672249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An investigation of the performance of ZigBee systems in high voltage electricity substations is described in this paper. The ZigBee wireless platform is a cost-efficient wireless networking system recently for the purpose of monitoring substation components in electric substations. Although this system has some inherent resistance to interference given its spread spectrum technology, impulsive noise with a short duration and a strong energy content caused by partial discharge (PD) of a dielectric breakdown can degrade the communication quality of ZigBee nodes. In this paper, a novel statistical model of substation PD impulsive noise is proposed and the impact of this impulsive noise on the ZigBee 2.4 GHz and 915 MHz frequency bands is evaluated. Although our results show the 2.4 GHz ZigBee is more resistant to PD impulsive noise in electricity substations, it may be advantageous to deploy 915 MHz ZigBee if PD detection and concurrent telemetry data collection are desired.\",\"PeriodicalId\":433870,\"journal\":{\"name\":\"2013 IEEE Power & Energy Society General Meeting\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Power & Energy Society General Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESMG.2013.6672249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Power & Energy Society General Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESMG.2013.6672249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Partial discharge impulsive noise in electricity substations and the impact on 2.4 GHz and 915 MHz ZigBee communications
An investigation of the performance of ZigBee systems in high voltage electricity substations is described in this paper. The ZigBee wireless platform is a cost-efficient wireless networking system recently for the purpose of monitoring substation components in electric substations. Although this system has some inherent resistance to interference given its spread spectrum technology, impulsive noise with a short duration and a strong energy content caused by partial discharge (PD) of a dielectric breakdown can degrade the communication quality of ZigBee nodes. In this paper, a novel statistical model of substation PD impulsive noise is proposed and the impact of this impulsive noise on the ZigBee 2.4 GHz and 915 MHz frequency bands is evaluated. Although our results show the 2.4 GHz ZigBee is more resistant to PD impulsive noise in electricity substations, it may be advantageous to deploy 915 MHz ZigBee if PD detection and concurrent telemetry data collection are desired.