Gremlin-ATL:可伸缩的模型转换框架

Gwendal Daniel, F. Jouault, G. Sunyé, Jordi Cabot
{"title":"Gremlin-ATL:可伸缩的模型转换框架","authors":"Gwendal Daniel, F. Jouault, G. Sunyé, Jordi Cabot","doi":"10.1109/ASE.2017.8115658","DOIUrl":null,"url":null,"abstract":"Industrial use of Model Driven Engineering techniques has emphasized the need for efficiently store, access, and transform very large models. While scalable persistence frameworks, typically based on some kind of NoSQL database, have been proposed to solve the model storage issue, the same level of performance improvement has not been achieved for the model transformation problem. Existing model transformation tools (such as the well-known ATL) often require the input models to be loaded in memory prior to the start of the transformation and are not optimized to benefit from lazy-loading mechanisms, mainly due to their dependency on current low-level APIs offered by the most popular modeling frameworks nowadays. In this paper we present Gremlin-ATL, a scalable and efficient model-to-model transformation framework that translates ATL transformations into Gremlin, a query language supported by several NoSQL databases. With Gremlin-ATL, the transformation is computed within the database itself, bypassing the modeling framework limitations and improving its performance both in terms of execution time and memory consumption. Tool support is available online.","PeriodicalId":382876,"journal":{"name":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Gremlin-ATL: A scalable model transformation framework\",\"authors\":\"Gwendal Daniel, F. Jouault, G. Sunyé, Jordi Cabot\",\"doi\":\"10.1109/ASE.2017.8115658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrial use of Model Driven Engineering techniques has emphasized the need for efficiently store, access, and transform very large models. While scalable persistence frameworks, typically based on some kind of NoSQL database, have been proposed to solve the model storage issue, the same level of performance improvement has not been achieved for the model transformation problem. Existing model transformation tools (such as the well-known ATL) often require the input models to be loaded in memory prior to the start of the transformation and are not optimized to benefit from lazy-loading mechanisms, mainly due to their dependency on current low-level APIs offered by the most popular modeling frameworks nowadays. In this paper we present Gremlin-ATL, a scalable and efficient model-to-model transformation framework that translates ATL transformations into Gremlin, a query language supported by several NoSQL databases. With Gremlin-ATL, the transformation is computed within the database itself, bypassing the modeling framework limitations and improving its performance both in terms of execution time and memory consumption. Tool support is available online.\",\"PeriodicalId\":382876,\"journal\":{\"name\":\"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASE.2017.8115658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2017.8115658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

模型驱动工程技术的工业应用强调了对高效存储、访问和转换非常大的模型的需要。虽然可扩展的持久性框架(通常基于某种NoSQL数据库)已经被提出用于解决模型存储问题,但在模型转换问题上却没有达到同样的性能改进水平。现有的模型转换工具(例如众所周知的ATL)通常需要在转换开始之前将输入模型加载到内存中,并且没有优化以从延迟加载机制中获益,这主要是因为它们依赖于当前最流行的建模框架提供的当前低级api。在本文中,我们提出了Gremlin-ATL,一个可扩展和高效的模型到模型转换框架,将ATL转换转换为Gremlin,一种由多个NoSQL数据库支持的查询语言。使用Gremlin-ATL,转换在数据库本身内计算,绕过建模框架的限制,并在执行时间和内存消耗方面提高其性能。在线提供工具支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gremlin-ATL: A scalable model transformation framework
Industrial use of Model Driven Engineering techniques has emphasized the need for efficiently store, access, and transform very large models. While scalable persistence frameworks, typically based on some kind of NoSQL database, have been proposed to solve the model storage issue, the same level of performance improvement has not been achieved for the model transformation problem. Existing model transformation tools (such as the well-known ATL) often require the input models to be loaded in memory prior to the start of the transformation and are not optimized to benefit from lazy-loading mechanisms, mainly due to their dependency on current low-level APIs offered by the most popular modeling frameworks nowadays. In this paper we present Gremlin-ATL, a scalable and efficient model-to-model transformation framework that translates ATL transformations into Gremlin, a query language supported by several NoSQL databases. With Gremlin-ATL, the transformation is computed within the database itself, bypassing the modeling framework limitations and improving its performance both in terms of execution time and memory consumption. Tool support is available online.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TiQi: A natural language interface for querying software project data A comprehensive study on real world concurrency bugs in Node.js Managing software evolution through semantic history slicing Software performance self-adaptation through efficient model predictive control Privacy-aware data-intensive applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1