为活动监控引入一个新的基准数据集

Attila Reiss, D. Stricker
{"title":"为活动监控引入一个新的基准数据集","authors":"Attila Reiss, D. Stricker","doi":"10.1109/ISWC.2012.13","DOIUrl":null,"url":null,"abstract":"This paper addresses the lack of a commonly used, standard dataset and established benchmarking problems for physical activity monitoring. A new dataset - recorded from 18 activities performed by 9 subjects, wearing 3 IMUs and a HR-monitor - is created and made publicly available. Moreover, 4 classification problems are benchmarked on the dataset, using a standard data processing chain and 5 different classifiers. The benchmark shows the difficulty of the classification tasks and exposes new challenges for physical activity monitoring.","PeriodicalId":190627,"journal":{"name":"2012 16th International Symposium on Wearable Computers","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"884","resultStr":"{\"title\":\"Introducing a New Benchmarked Dataset for Activity Monitoring\",\"authors\":\"Attila Reiss, D. Stricker\",\"doi\":\"10.1109/ISWC.2012.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the lack of a commonly used, standard dataset and established benchmarking problems for physical activity monitoring. A new dataset - recorded from 18 activities performed by 9 subjects, wearing 3 IMUs and a HR-monitor - is created and made publicly available. Moreover, 4 classification problems are benchmarked on the dataset, using a standard data processing chain and 5 different classifiers. The benchmark shows the difficulty of the classification tasks and exposes new challenges for physical activity monitoring.\",\"PeriodicalId\":190627,\"journal\":{\"name\":\"2012 16th International Symposium on Wearable Computers\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"884\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 16th International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWC.2012.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 16th International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWC.2012.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 884

摘要

本文解决了缺乏一个常用的、标准的数据集和建立的体育活动监测基准问题。一个新的数据集——记录了9名受试者戴着3个imu和一个hr监测器进行的18项活动——被创建并公开提供。此外,使用标准的数据处理链和5种不同的分类器,在数据集上对4个分类问题进行了基准测试。该基准显示了分类任务的难度,并为身体活动监测提出了新的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Introducing a New Benchmarked Dataset for Activity Monitoring
This paper addresses the lack of a commonly used, standard dataset and established benchmarking problems for physical activity monitoring. A new dataset - recorded from 18 activities performed by 9 subjects, wearing 3 IMUs and a HR-monitor - is created and made publicly available. Moreover, 4 classification problems are benchmarked on the dataset, using a standard data processing chain and 5 different classifiers. The benchmark shows the difficulty of the classification tasks and exposes new challenges for physical activity monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tongue Mounted Interface for Digitally Actuating the Sense of Taste Energy-Efficient Continuous Activity Recognition on Mobile Phones: An Activity-Adaptive Approach Recognizing Daily Life Context Using Web-Collected Audio Data Toe Input Using a Mobile Projector and Kinect Sensor Energy-Efficient Activity Recognition Using Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1