随机对角线近似最大下降的径向效应

H. Tan, K. Lim, H. Harno
{"title":"随机对角线近似最大下降的径向效应","authors":"H. Tan, K. Lim, H. Harno","doi":"10.1109/ICSIPA.2017.8120611","DOIUrl":null,"url":null,"abstract":"Stochastic Diagonal Approximate Greatest Descent (SDAGD) is proposed to manage the optimization in two stages, (a) apply a radial boundary to estimate step length when the weights are far from solution, (b) apply Newton method when the weights are within the solution level set. This is inspired by a multi-stage decision control system where different strategies is used at different conditions. In numerical optimization context, larger steps should be taken at the beginning of optimization and gradually reduced when it is near to the minimum point. Nevertheless, the intuition of determining the radial boundary when the optimized parameters are far from the solution is yet to be investigated for high dimensional data. Radial step length in SDAGD manipulates the relative step length for iteration construction. SDAGD is implemented in a two layer Multilayer Perceptron to evaluate the effects of R on artificial neural networks. It is concluded that the greater the value of R, the higher the learning rate of SDAGD algorithm when the value of R is constrained in between 100 to 10,000.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radial effect in stochastic diagonal approximate greatest descent\",\"authors\":\"H. Tan, K. Lim, H. Harno\",\"doi\":\"10.1109/ICSIPA.2017.8120611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic Diagonal Approximate Greatest Descent (SDAGD) is proposed to manage the optimization in two stages, (a) apply a radial boundary to estimate step length when the weights are far from solution, (b) apply Newton method when the weights are within the solution level set. This is inspired by a multi-stage decision control system where different strategies is used at different conditions. In numerical optimization context, larger steps should be taken at the beginning of optimization and gradually reduced when it is near to the minimum point. Nevertheless, the intuition of determining the radial boundary when the optimized parameters are far from the solution is yet to be investigated for high dimensional data. Radial step length in SDAGD manipulates the relative step length for iteration construction. SDAGD is implemented in a two layer Multilayer Perceptron to evaluate the effects of R on artificial neural networks. It is concluded that the greater the value of R, the higher the learning rate of SDAGD algorithm when the value of R is constrained in between 100 to 10,000.\",\"PeriodicalId\":268112,\"journal\":{\"name\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2017.8120611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出随机对角近似最大下降法(SDAGD),分两个阶段进行优化,即当权值离解较远时,采用径向边界估计步长;当权值在解水平集中时,采用牛顿法。这是受到多阶段决策控制系统的启发,其中在不同的条件下使用不同的策略。在数值优化环境中,在优化开始时应采取较大的步长,在接近最小值点时逐渐减少步长。然而,对于高维数据,当优化参数离解很远时,确定径向边界的直觉性还有待研究。SDAGD中的径向步长操纵迭代构造的相对步长。SDAGD在一个两层多层感知器中实现,以评估R对人工神经网络的影响。结果表明,当R的值被约束在100 ~ 10000之间时,R的值越大,SDAGD算法的学习率越高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Radial effect in stochastic diagonal approximate greatest descent
Stochastic Diagonal Approximate Greatest Descent (SDAGD) is proposed to manage the optimization in two stages, (a) apply a radial boundary to estimate step length when the weights are far from solution, (b) apply Newton method when the weights are within the solution level set. This is inspired by a multi-stage decision control system where different strategies is used at different conditions. In numerical optimization context, larger steps should be taken at the beginning of optimization and gradually reduced when it is near to the minimum point. Nevertheless, the intuition of determining the radial boundary when the optimized parameters are far from the solution is yet to be investigated for high dimensional data. Radial step length in SDAGD manipulates the relative step length for iteration construction. SDAGD is implemented in a two layer Multilayer Perceptron to evaluate the effects of R on artificial neural networks. It is concluded that the greater the value of R, the higher the learning rate of SDAGD algorithm when the value of R is constrained in between 100 to 10,000.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced forensic speaker verification using multi-run ICA in the presence of environmental noise and reverberation conditions A real-time multi-class multi-object tracker using YOLOv2 Hybrid neural network and regression tree ensemble pruned by simulated annealing for virtual flow metering application Hybrid DWT and MFCC feature warping for noisy forensic speaker verification in room reverberation A deep architecture for face recognition based on multiple feature extraction techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1