基于多尺度细化网络的声回波抵消

Fan Cui, Liyong Guo, Wenfeng Li, Peng Gao, Yujun Wang
{"title":"基于多尺度细化网络的声回波抵消","authors":"Fan Cui, Liyong Guo, Wenfeng Li, Peng Gao, Yujun Wang","doi":"10.1109/ICASSP43922.2022.9747891","DOIUrl":null,"url":null,"abstract":"Recently, deep encoder-decoder networks have shown outstanding performance in acoustic echo cancellation (AEC). However, the subsampling operations like convolution striding in the encoder layers significantly decrease the feature resolution lead to fine-grained information loss. This paper proposes an encoder-decoder network for acoustic echo cancellation with mutli-scale refinement paths to exploit the information at different feature scales. In the encoder stage, high-level features are obtained to get a coarse result. Then, the decoder layers with multiple refinement paths can directly refine the result with fine-grained features. Refinement paths with different feature scales are combined by learnable weights. The experimental results show that using the proposed multi-scale refinement structure can significantly improve the objective criteria. In the ICASSP 2022 Acoustic echo cancellation Challenge, our submitted system achieves an overall MOS score of 4.439 with 4.37 million parameters at a system latency of 40ms.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-Scale Refinement Network Based Acoustic Echo Cancellation\",\"authors\":\"Fan Cui, Liyong Guo, Wenfeng Li, Peng Gao, Yujun Wang\",\"doi\":\"10.1109/ICASSP43922.2022.9747891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, deep encoder-decoder networks have shown outstanding performance in acoustic echo cancellation (AEC). However, the subsampling operations like convolution striding in the encoder layers significantly decrease the feature resolution lead to fine-grained information loss. This paper proposes an encoder-decoder network for acoustic echo cancellation with mutli-scale refinement paths to exploit the information at different feature scales. In the encoder stage, high-level features are obtained to get a coarse result. Then, the decoder layers with multiple refinement paths can directly refine the result with fine-grained features. Refinement paths with different feature scales are combined by learnable weights. The experimental results show that using the proposed multi-scale refinement structure can significantly improve the objective criteria. In the ICASSP 2022 Acoustic echo cancellation Challenge, our submitted system achieves an overall MOS score of 4.439 with 4.37 million parameters at a system latency of 40ms.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP43922.2022.9747891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP43922.2022.9747891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,深度编码器-解码器网络在声回波消除(AEC)方面表现出了优异的性能。然而,编码器层中的卷积步进等子采样操作显著降低了特征分辨率,导致细粒度信息丢失。本文提出了一种基于多尺度细化路径的声回波抵消编码器-解码器网络,以利用不同特征尺度的信息。在编码器阶段,获取高级特征,得到粗糙的结果。然后,具有多个细化路径的解码器层可以直接对结果进行细粒度特征的细化。不同特征尺度的细化路径通过可学习权值组合。实验结果表明,采用所提出的多尺度细化结构可以显著提高客观标准。在ICASSP 2022声学回波消除挑战赛中,我们提交的系统在系统延迟为40ms的情况下,在437万个参数下获得了4439分的总体MOS分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Scale Refinement Network Based Acoustic Echo Cancellation
Recently, deep encoder-decoder networks have shown outstanding performance in acoustic echo cancellation (AEC). However, the subsampling operations like convolution striding in the encoder layers significantly decrease the feature resolution lead to fine-grained information loss. This paper proposes an encoder-decoder network for acoustic echo cancellation with mutli-scale refinement paths to exploit the information at different feature scales. In the encoder stage, high-level features are obtained to get a coarse result. Then, the decoder layers with multiple refinement paths can directly refine the result with fine-grained features. Refinement paths with different feature scales are combined by learnable weights. The experimental results show that using the proposed multi-scale refinement structure can significantly improve the objective criteria. In the ICASSP 2022 Acoustic echo cancellation Challenge, our submitted system achieves an overall MOS score of 4.439 with 4.37 million parameters at a system latency of 40ms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatio-Temporal Attention Graph Convolution Network for Functional Connectome Classification Improving Biomedical Named Entity Recognition with a Unified Multi-Task MRC Framework Combining Multiple Style Transfer Networks and Transfer Learning For LGE-CMR Segmentation Sensors to Sign Language: A Natural Approach to Equitable Communication Estimation of the Admittance Matrix in Power Systems Under Laplacian and Physical Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1