用于宏基因组样本表型预测的深度神经网络建模

Yassin Mreyoud, Tae-Hyuk Ahn
{"title":"用于宏基因组样本表型预测的深度神经网络建模","authors":"Yassin Mreyoud, Tae-Hyuk Ahn","doi":"10.1145/3388440.3414921","DOIUrl":null,"url":null,"abstract":"The increasing popularity of metagenomic sequencing has resulted in a plethora of 16S RNA and whole genome sequence data available. Microbes play an important role in the health and disease of humans, pets, and livestock. Characterizing such microbes and their relative abundances are important to identify sample phenotypes such as disease. In the past, machine learning based methods have been applied for prediction of host disease status and overall health based on taxonomic abundance profiles. Here we utilize deep neural network modeling with taxonomic profiles for faster, precise, and effective prediction of metagenomic sample phenotypes.","PeriodicalId":411338,"journal":{"name":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Neural Network Modeling for Phenotypic Prediction of Metagenomic Samples\",\"authors\":\"Yassin Mreyoud, Tae-Hyuk Ahn\",\"doi\":\"10.1145/3388440.3414921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing popularity of metagenomic sequencing has resulted in a plethora of 16S RNA and whole genome sequence data available. Microbes play an important role in the health and disease of humans, pets, and livestock. Characterizing such microbes and their relative abundances are important to identify sample phenotypes such as disease. In the past, machine learning based methods have been applied for prediction of host disease status and overall health based on taxonomic abundance profiles. Here we utilize deep neural network modeling with taxonomic profiles for faster, precise, and effective prediction of metagenomic sample phenotypes.\",\"PeriodicalId\":411338,\"journal\":{\"name\":\"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3388440.3414921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3388440.3414921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

宏基因组测序的日益普及导致了16S RNA和全基因组序列数据的过剩。微生物在人类、宠物和牲畜的健康和疾病中起着重要作用。表征这些微生物及其相对丰度对于确定样品表型(如疾病)非常重要。过去,基于机器学习的方法已被应用于基于分类丰度谱的宿主疾病状态和整体健康预测。在这里,我们利用具有分类概况的深度神经网络建模来更快,精确和有效地预测宏基因组样本表型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Neural Network Modeling for Phenotypic Prediction of Metagenomic Samples
The increasing popularity of metagenomic sequencing has resulted in a plethora of 16S RNA and whole genome sequence data available. Microbes play an important role in the health and disease of humans, pets, and livestock. Characterizing such microbes and their relative abundances are important to identify sample phenotypes such as disease. In the past, machine learning based methods have been applied for prediction of host disease status and overall health based on taxonomic abundance profiles. Here we utilize deep neural network modeling with taxonomic profiles for faster, precise, and effective prediction of metagenomic sample phenotypes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RA2Vec CanMod From Interatomic Distances to Protein Tertiary Structures with a Deep Convolutional Neural Network Prediction of Large for Gestational Age Infants in Overweight and Obese Women at Approximately 20 Gestational Weeks Using Patient Information for the Prediction of Caregiver Burden in Amyotrophic Lateral Sclerosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1