{"title":"确定架构的足迹","authors":"B. Brownell","doi":"10.4018/978-1-5225-6995-4.CH002","DOIUrl":null,"url":null,"abstract":"Current approaches to designing sustainable buildings are inadequate for meeting environmental goals. Buildings continue to consume nearly half of all resources, and architects, engineers, and contractors remain complicit in their deficient environmental performance—as well as the consequential global overshoot of resource consumption. It is imperative that the AEC industry pursue an alternative approach to green rating systems with the intent to determine measurable, absolute outcomes. The most appropriate existing model is the ecological footprint (EF) method devised by Mathis Wackernagel and William Rees at the University of British Columbia in the early 1990s. EF quantifies the human demand on the environment in terms of both resources and waste, translating these impacts into land area equivalents. This chapter aims to evaluate EF methodology for buildings by analyzing existing models and proposing new approaches while identifying their respective opportunities and limitations.","PeriodicalId":331519,"journal":{"name":"Research Anthology on Environmental and Societal Well-Being Considerations in Buildings and Architecture","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Determining Architecture's Footprint\",\"authors\":\"B. Brownell\",\"doi\":\"10.4018/978-1-5225-6995-4.CH002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current approaches to designing sustainable buildings are inadequate for meeting environmental goals. Buildings continue to consume nearly half of all resources, and architects, engineers, and contractors remain complicit in their deficient environmental performance—as well as the consequential global overshoot of resource consumption. It is imperative that the AEC industry pursue an alternative approach to green rating systems with the intent to determine measurable, absolute outcomes. The most appropriate existing model is the ecological footprint (EF) method devised by Mathis Wackernagel and William Rees at the University of British Columbia in the early 1990s. EF quantifies the human demand on the environment in terms of both resources and waste, translating these impacts into land area equivalents. This chapter aims to evaluate EF methodology for buildings by analyzing existing models and proposing new approaches while identifying their respective opportunities and limitations.\",\"PeriodicalId\":331519,\"journal\":{\"name\":\"Research Anthology on Environmental and Societal Well-Being Considerations in Buildings and Architecture\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Anthology on Environmental and Societal Well-Being Considerations in Buildings and Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-5225-6995-4.CH002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Anthology on Environmental and Societal Well-Being Considerations in Buildings and Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-6995-4.CH002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前设计可持续建筑的方法不足以满足环境目标。建筑继续消耗近一半的资源,建筑师、工程师和承包商仍然在他们的环境绩效不足以及随之而来的全球资源消耗过度方面串通一气。AEC行业必须寻求一种替代绿色评级体系的方法,以确定可衡量的绝对结果。最合适的现有模型是由英属哥伦比亚大学的马西斯·瓦克纳格尔和威廉·里斯在20世纪90年代初设计的生态足迹(EF)方法。EF从资源和废物两方面量化了人类对环境的需求,并将这些影响转化为相当于土地面积的影响。本章旨在通过分析现有模型和提出新的方法,同时确定各自的机会和局限性,来评估建筑物的环境教育方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determining Architecture's Footprint
Current approaches to designing sustainable buildings are inadequate for meeting environmental goals. Buildings continue to consume nearly half of all resources, and architects, engineers, and contractors remain complicit in their deficient environmental performance—as well as the consequential global overshoot of resource consumption. It is imperative that the AEC industry pursue an alternative approach to green rating systems with the intent to determine measurable, absolute outcomes. The most appropriate existing model is the ecological footprint (EF) method devised by Mathis Wackernagel and William Rees at the University of British Columbia in the early 1990s. EF quantifies the human demand on the environment in terms of both resources and waste, translating these impacts into land area equivalents. This chapter aims to evaluate EF methodology for buildings by analyzing existing models and proposing new approaches while identifying their respective opportunities and limitations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating the Environmental Impact Score of a Residential Building Using Life Cycle Assessment Financing the Green Building Retrofitting Investments Construction of Cooperative Environment and Institution for Green Building Supply Chain Subjects Environmental Analysis of Construction Materials Considerations Regarding the Green Retrofitting of Residential Buildings From Human Wellbeing Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1