基于用户重要性计算的关键用户发现模型

Xiangfeng Luo, Lei Zhang, Yawen Yi, Ruirong Xue, D. Jiang
{"title":"基于用户重要性计算的关键用户发现模型","authors":"Xiangfeng Luo, Lei Zhang, Yawen Yi, Ruirong Xue, D. Jiang","doi":"10.1504/ijcse.2020.10027436","DOIUrl":null,"url":null,"abstract":"Recently, more and more users publish their views on events in social media. Identifying influential users in social media can help to analyse the impact of hot events or enterprise products in the real world. The existing mainstream methods are based on attribute analysis or network analysis. But attribute-based methods only select relatively simple characteristics without examining the event targeted properties; the network-based methods only use the user behaviour relation or the content association relation to build a network without considering the user attributes. Therefore, they cannot effectively calculate the user importance. This paper proposes a multi-angle user importance calculation method with event-specificity. In our method, the overall importance of a user is measured by taking the four levels within the user layer, the fan layer, the microblog layer, and the event layer into account. Experimental results show that our method can effectively calculate the importance of users.","PeriodicalId":340410,"journal":{"name":"Int. J. Comput. Sci. Eng.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The key user discovery model based on user importance calculation\",\"authors\":\"Xiangfeng Luo, Lei Zhang, Yawen Yi, Ruirong Xue, D. Jiang\",\"doi\":\"10.1504/ijcse.2020.10027436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, more and more users publish their views on events in social media. Identifying influential users in social media can help to analyse the impact of hot events or enterprise products in the real world. The existing mainstream methods are based on attribute analysis or network analysis. But attribute-based methods only select relatively simple characteristics without examining the event targeted properties; the network-based methods only use the user behaviour relation or the content association relation to build a network without considering the user attributes. Therefore, they cannot effectively calculate the user importance. This paper proposes a multi-angle user importance calculation method with event-specificity. In our method, the overall importance of a user is measured by taking the four levels within the user layer, the fan layer, the microblog layer, and the event layer into account. Experimental results show that our method can effectively calculate the importance of users.\",\"PeriodicalId\":340410,\"journal\":{\"name\":\"Int. J. Comput. Sci. Eng.\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcse.2020.10027436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcse.2020.10027436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最近,越来越多的用户在社交媒体上发表他们对事件的看法。识别社交媒体中有影响力的用户有助于分析热点事件或企业产品在现实世界中的影响。现有的主流方法是基于属性分析或网络分析。但是基于属性的方法只选择相对简单的特征,而不检查事件目标属性;基于网络的方法仅使用用户行为关系或内容关联关系来构建网络,而不考虑用户属性。因此,他们不能有效地计算用户的重要性。提出了一种具有事件特异性的多角度用户重要性计算方法。在我们的方法中,通过考虑用户层、粉丝层、微博层和事件层中的四个层次来衡量用户的整体重要性。实验结果表明,该方法可以有效地计算出用户的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The key user discovery model based on user importance calculation
Recently, more and more users publish their views on events in social media. Identifying influential users in social media can help to analyse the impact of hot events or enterprise products in the real world. The existing mainstream methods are based on attribute analysis or network analysis. But attribute-based methods only select relatively simple characteristics without examining the event targeted properties; the network-based methods only use the user behaviour relation or the content association relation to build a network without considering the user attributes. Therefore, they cannot effectively calculate the user importance. This paper proposes a multi-angle user importance calculation method with event-specificity. In our method, the overall importance of a user is measured by taking the four levels within the user layer, the fan layer, the microblog layer, and the event layer into account. Experimental results show that our method can effectively calculate the importance of users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECC-based lightweight mutual authentication protocol for fog enabled IoT system using three-way authentication procedure Gene selection and classification combining information gain ratio with fruit fly optimisation algorithm for single-cell RNA-seq data Attitude control of an unmanned patrol helicopter based on an optimised spiking neural membrane system for use in coal mines CEMP-IR: a novel location aware cache invalidation and replacement policy Prediction of consumer preference for the bottom of the pyramid using EEG-based deep model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1