会话式对话系统中语音输入识别与分类的重排序方法

Fabrizio Morbini, Kartik Audhkhasi, Ron Artstein, Maarten Van Segbroeck, Kenji Sagae, P. Georgiou, D. Traum, Shrikanth S. Narayanan
{"title":"会话式对话系统中语音输入识别与分类的重排序方法","authors":"Fabrizio Morbini, Kartik Audhkhasi, Ron Artstein, Maarten Van Segbroeck, Kenji Sagae, P. Georgiou, D. Traum, Shrikanth S. Narayanan","doi":"10.1109/SLT.2012.6424196","DOIUrl":null,"url":null,"abstract":"We address the challenge of interpreting spoken input in a conversational dialogue system with an approach that aims to exploit the close relationship between the tasks of speech recognition and language understanding through joint modeling of these two tasks. Instead of using a standard pipeline approach where the output of a speech recognizer is the input of a language understanding module, we merge multiple speech recognition and utterance classification hypotheses into one list to be processed by a joint reranking model. We obtain substantially improved performance in language understanding in experiments with thousands of user utterances collected from a deployed spoken dialogue system.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"A reranking approach for recognition and classification of speech input in conversational dialogue systems\",\"authors\":\"Fabrizio Morbini, Kartik Audhkhasi, Ron Artstein, Maarten Van Segbroeck, Kenji Sagae, P. Georgiou, D. Traum, Shrikanth S. Narayanan\",\"doi\":\"10.1109/SLT.2012.6424196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the challenge of interpreting spoken input in a conversational dialogue system with an approach that aims to exploit the close relationship between the tasks of speech recognition and language understanding through joint modeling of these two tasks. Instead of using a standard pipeline approach where the output of a speech recognizer is the input of a language understanding module, we merge multiple speech recognition and utterance classification hypotheses into one list to be processed by a joint reranking model. We obtain substantially improved performance in language understanding in experiments with thousands of user utterances collected from a deployed spoken dialogue system.\",\"PeriodicalId\":375378,\"journal\":{\"name\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2012.6424196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

我们解决了在会话对话系统中解释语音输入的挑战,该方法旨在通过对这两个任务的联合建模来利用语音识别和语言理解任务之间的密切关系。我们没有使用标准的管道方法,其中语音识别器的输出是语言理解模块的输入,而是将多个语音识别和话语分类假设合并到一个列表中,由联合重新排序模型进行处理。我们从一个已部署的口语对话系统中收集了数千个用户的话语,在实验中获得了显著提高的语言理解性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A reranking approach for recognition and classification of speech input in conversational dialogue systems
We address the challenge of interpreting spoken input in a conversational dialogue system with an approach that aims to exploit the close relationship between the tasks of speech recognition and language understanding through joint modeling of these two tasks. Instead of using a standard pipeline approach where the output of a speech recognizer is the input of a language understanding module, we merge multiple speech recognition and utterance classification hypotheses into one list to be processed by a joint reranking model. We obtain substantially improved performance in language understanding in experiments with thousands of user utterances collected from a deployed spoken dialogue system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining criteria for the detection of incorrect entries of non-native speech in the context of foreign language learning Two-layer mutually reinforced random walk for improved multi-party meeting summarization Train&align: A new online tool for automatic phonetic alignment Automatic detection and correction of syntax-based prosody annotation errors Word segmentation through cross-lingual word-to-phoneme alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1