Yueqin Dai, Yifeng Song, Jing Tian, Zhongfeng Wang
{"title":"Haraka在SPHINCS+中的高吞吐量硬件实现","authors":"Yueqin Dai, Yifeng Song, Jing Tian, Zhongfeng Wang","doi":"10.1109/ISQED57927.2023.10129310","DOIUrl":null,"url":null,"abstract":"SPHINCS+, a hash-based signature scheme, has stood out as one of the four winners in the post-quantum cryptography (PQC) competition hosted by the U.S. National Institute of Standards and Technology (NIST). However, the slow signing speed forms a bottleneck for applications. Therefore, a kind of short-input hash function named Haraka is recommended as the third instantiation in SPHINCS+ due to its advantage in processing speed. In this work, we propose four hardware architecture schemes for Haraka in SPHINCS+, denoted as Case I to Case IV. Several optimization methods are combined and applied in different cases to perform the trade-off between area and throughput for different application scenarios. We code our designs in System Verilog language and synthesize them under the TSMC 28-nm CMOS technology. The experiment results show that Case IV achieves the best throughput and the most efficient performance, about 81.92 Gbps and 1.26 Mbps/GE, respectively, which also significantly outperforms the state-of-the-art implementation of Haraka and the advanced hardware implementation of the SHA-3 hash function.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High-Throughput Hardware Implementation for Haraka in SPHINCS+\",\"authors\":\"Yueqin Dai, Yifeng Song, Jing Tian, Zhongfeng Wang\",\"doi\":\"10.1109/ISQED57927.2023.10129310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SPHINCS+, a hash-based signature scheme, has stood out as one of the four winners in the post-quantum cryptography (PQC) competition hosted by the U.S. National Institute of Standards and Technology (NIST). However, the slow signing speed forms a bottleneck for applications. Therefore, a kind of short-input hash function named Haraka is recommended as the third instantiation in SPHINCS+ due to its advantage in processing speed. In this work, we propose four hardware architecture schemes for Haraka in SPHINCS+, denoted as Case I to Case IV. Several optimization methods are combined and applied in different cases to perform the trade-off between area and throughput for different application scenarios. We code our designs in System Verilog language and synthesize them under the TSMC 28-nm CMOS technology. The experiment results show that Case IV achieves the best throughput and the most efficient performance, about 81.92 Gbps and 1.26 Mbps/GE, respectively, which also significantly outperforms the state-of-the-art implementation of Haraka and the advanced hardware implementation of the SHA-3 hash function.\",\"PeriodicalId\":315053,\"journal\":{\"name\":\"2023 24th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 24th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED57927.2023.10129310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 24th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED57927.2023.10129310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Throughput Hardware Implementation for Haraka in SPHINCS+
SPHINCS+, a hash-based signature scheme, has stood out as one of the four winners in the post-quantum cryptography (PQC) competition hosted by the U.S. National Institute of Standards and Technology (NIST). However, the slow signing speed forms a bottleneck for applications. Therefore, a kind of short-input hash function named Haraka is recommended as the third instantiation in SPHINCS+ due to its advantage in processing speed. In this work, we propose four hardware architecture schemes for Haraka in SPHINCS+, denoted as Case I to Case IV. Several optimization methods are combined and applied in different cases to perform the trade-off between area and throughput for different application scenarios. We code our designs in System Verilog language and synthesize them under the TSMC 28-nm CMOS technology. The experiment results show that Case IV achieves the best throughput and the most efficient performance, about 81.92 Gbps and 1.26 Mbps/GE, respectively, which also significantly outperforms the state-of-the-art implementation of Haraka and the advanced hardware implementation of the SHA-3 hash function.