{"title":"柔性夹持器复合恒力机构设计与分析","authors":"Xiaozhi Zhang, Qingsong Xu","doi":"10.1109/MARSS.2018.8481162","DOIUrl":null,"url":null,"abstract":"This paper presents the design and analysis of a new compliant constant-force gripper based on compound constant-force mechanism. The constant-force property can reduce the input force and prevent the object from damage without using a force feedback control. The compound constant-force mechanism contains an active and a passive constant-force structure. The active constant-force structure can reduce the input force, while the passive constant-force structure offers the safe interaction during the gripping operation. To evaluate the performance of the compound constant-force mechanism, analytical modeling is carried out, which is verified by conducting finite element analysis (FEA) simulation study. Results demonstrate the promising performance of the proposed mechanism design.","PeriodicalId":118389,"journal":{"name":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Design and Analysis of a Compound Constant-Force Mechanism for Compliant Gripper\",\"authors\":\"Xiaozhi Zhang, Qingsong Xu\",\"doi\":\"10.1109/MARSS.2018.8481162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design and analysis of a new compliant constant-force gripper based on compound constant-force mechanism. The constant-force property can reduce the input force and prevent the object from damage without using a force feedback control. The compound constant-force mechanism contains an active and a passive constant-force structure. The active constant-force structure can reduce the input force, while the passive constant-force structure offers the safe interaction during the gripping operation. To evaluate the performance of the compound constant-force mechanism, analytical modeling is carried out, which is verified by conducting finite element analysis (FEA) simulation study. Results demonstrate the promising performance of the proposed mechanism design.\",\"PeriodicalId\":118389,\"journal\":{\"name\":\"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MARSS.2018.8481162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MARSS.2018.8481162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Analysis of a Compound Constant-Force Mechanism for Compliant Gripper
This paper presents the design and analysis of a new compliant constant-force gripper based on compound constant-force mechanism. The constant-force property can reduce the input force and prevent the object from damage without using a force feedback control. The compound constant-force mechanism contains an active and a passive constant-force structure. The active constant-force structure can reduce the input force, while the passive constant-force structure offers the safe interaction during the gripping operation. To evaluate the performance of the compound constant-force mechanism, analytical modeling is carried out, which is verified by conducting finite element analysis (FEA) simulation study. Results demonstrate the promising performance of the proposed mechanism design.