在潜在空间中嵌入多种特征进行人脸属性编辑

Rui Yuan, Xiping He, Dan He, Yue Li
{"title":"在潜在空间中嵌入多种特征进行人脸属性编辑","authors":"Rui Yuan, Xiping He, Dan He, Yue Li","doi":"10.1117/12.2667748","DOIUrl":null,"url":null,"abstract":"Face attribute editing, one of the important research directions in face image synthesis and processing techniques, aims to photorealistic editing single or multiple attributes of face images on demand using editing and generation models. Most existing methods are based on generative adversarial networks, using target attribute vectors to control the editing region or Gaussian noise as conditional input to capture texture details. However, these cannot better control the consistency of attributes in irrelevant regions, while the generation of fidelity is also limited. In this paper, we propose a method that uses an optimized latent space to fuse the attribute feature maps into the latent space. At the same time, make full use of the conditional information for additional constraints. Then, in the image generation phase, we use a progressive architecture for controlled editing of face attributes at different granularities. At last, we also conducted an ablation study on the selected training scheme further to demonstrate the stability and accuracy of our chosen method. The experiments show that our proposed approach, using an end-to-end progressive image translation network architecture, obtained qualitative (FID) as well as quantitative (LPIPS) face image editing results.","PeriodicalId":345723,"journal":{"name":"Fifth International Conference on Computer Information Science and Artificial Intelligence","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embedding diverse features in latent space for face attribute editing\",\"authors\":\"Rui Yuan, Xiping He, Dan He, Yue Li\",\"doi\":\"10.1117/12.2667748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face attribute editing, one of the important research directions in face image synthesis and processing techniques, aims to photorealistic editing single or multiple attributes of face images on demand using editing and generation models. Most existing methods are based on generative adversarial networks, using target attribute vectors to control the editing region or Gaussian noise as conditional input to capture texture details. However, these cannot better control the consistency of attributes in irrelevant regions, while the generation of fidelity is also limited. In this paper, we propose a method that uses an optimized latent space to fuse the attribute feature maps into the latent space. At the same time, make full use of the conditional information for additional constraints. Then, in the image generation phase, we use a progressive architecture for controlled editing of face attributes at different granularities. At last, we also conducted an ablation study on the selected training scheme further to demonstrate the stability and accuracy of our chosen method. The experiments show that our proposed approach, using an end-to-end progressive image translation network architecture, obtained qualitative (FID) as well as quantitative (LPIPS) face image editing results.\",\"PeriodicalId\":345723,\"journal\":{\"name\":\"Fifth International Conference on Computer Information Science and Artificial Intelligence\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on Computer Information Science and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2667748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Computer Information Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2667748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人脸属性编辑是人脸图像合成与处理技术的重要研究方向之一,其目的是利用编辑和生成模型,按需对人脸图像的单个或多个属性进行逼真的编辑。现有方法大多基于生成对抗网络,利用目标属性向量控制编辑区域或高斯噪声作为条件输入捕获纹理细节。然而,这些方法不能很好地控制不相关区域属性的一致性,同时保真度的生成也受到限制。本文提出了一种利用优化后的潜在空间将属性特征映射融合到潜在空间的方法。同时,充分利用条件信息进行附加约束。然后,在图像生成阶段,我们使用渐进式架构对不同粒度的人脸属性进行控制编辑。最后,我们还对所选择的训练方案进行了烧蚀研究,进一步验证了所选择方法的稳定性和准确性。实验表明,我们提出的方法使用端到端渐进式图像翻译网络架构,获得了定性(FID)和定量(LPIPS)的人脸图像编辑结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Embedding diverse features in latent space for face attribute editing
Face attribute editing, one of the important research directions in face image synthesis and processing techniques, aims to photorealistic editing single or multiple attributes of face images on demand using editing and generation models. Most existing methods are based on generative adversarial networks, using target attribute vectors to control the editing region or Gaussian noise as conditional input to capture texture details. However, these cannot better control the consistency of attributes in irrelevant regions, while the generation of fidelity is also limited. In this paper, we propose a method that uses an optimized latent space to fuse the attribute feature maps into the latent space. At the same time, make full use of the conditional information for additional constraints. Then, in the image generation phase, we use a progressive architecture for controlled editing of face attributes at different granularities. At last, we also conducted an ablation study on the selected training scheme further to demonstrate the stability and accuracy of our chosen method. The experiments show that our proposed approach, using an end-to-end progressive image translation network architecture, obtained qualitative (FID) as well as quantitative (LPIPS) face image editing results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and application of rhythmic gymnastics auxiliary training system based on Kinect Long-term stock price forecast based on PSO-informer model Research on numerical simulation of deep seabed blowout and oil spill range FL-Lightgbm prediction method of unbalanced small sample anti-breast cancer drugs Learning anisotropy and asymmetry geometric features for medical image segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1