通过基于补丁的稀疏算法实现超分辨率

Maryam Dashti, S. S. Ghidary, Tahmineh Hosseinian, Mohammadreza Pourfard, K. Faez
{"title":"通过基于补丁的稀疏算法实现超分辨率","authors":"Maryam Dashti, S. S. Ghidary, Tahmineh Hosseinian, Mohammadreza Pourfard, K. Faez","doi":"10.1109/AISP.2015.7123496","DOIUrl":null,"url":null,"abstract":"The Sparsity concept has been widely used in image processing applications. In this paper, an approach for super-resolution has been proposed which uses sparse transform. This approach has mixed the inpainting concept with zooming via a sparse representation. A dictionary is being trained from a low-resolution image and then a zoomed version of this low resolution image will use that dictionary in a few iterations to fill the undefined image pixels. Experimental results confirm the strength of this algorithm against the other interpolation algorithms.","PeriodicalId":405857,"journal":{"name":"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Super-resolution via a patch-based sparse algorithm\",\"authors\":\"Maryam Dashti, S. S. Ghidary, Tahmineh Hosseinian, Mohammadreza Pourfard, K. Faez\",\"doi\":\"10.1109/AISP.2015.7123496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Sparsity concept has been widely used in image processing applications. In this paper, an approach for super-resolution has been proposed which uses sparse transform. This approach has mixed the inpainting concept with zooming via a sparse representation. A dictionary is being trained from a low-resolution image and then a zoomed version of this low resolution image will use that dictionary in a few iterations to fill the undefined image pixels. Experimental results confirm the strength of this algorithm against the other interpolation algorithms.\",\"PeriodicalId\":405857,\"journal\":{\"name\":\"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AISP.2015.7123496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP.2015.7123496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

稀疏性概念在图像处理应用中得到了广泛的应用。本文提出了一种利用稀疏变换实现超分辨的方法。这种方法通过稀疏表示混合了绘画概念和缩放。从低分辨率图像中训练字典,然后该低分辨率图像的缩放版本将在几次迭代中使用该字典来填充未定义的图像像素。实验结果证实了该算法相对于其他插值算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Super-resolution via a patch-based sparse algorithm
The Sparsity concept has been widely used in image processing applications. In this paper, an approach for super-resolution has been proposed which uses sparse transform. This approach has mixed the inpainting concept with zooming via a sparse representation. A dictionary is being trained from a low-resolution image and then a zoomed version of this low resolution image will use that dictionary in a few iterations to fill the undefined image pixels. Experimental results confirm the strength of this algorithm against the other interpolation algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Small target detection and tracking based on the background elimination and Kalman filter A novel image watermarking scheme using blocks coefficient in DHT domain Latent space model for analysis of conventions A new algorithm for data clustering based on gravitational search algorithm and genetic operators Learning a new distance metric to improve an SVM-clustering based intrusion detection system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1