E. Yamashkina, S. Yamashkin, O. V. Platonova, S. Kovalenko
{"title":"空间数据分析神经网络模型的开发","authors":"E. Yamashkina, S. Yamashkin, O. V. Platonova, S. Kovalenko","doi":"10.32362/2500-316x-2022-10-5-28-37","DOIUrl":null,"url":null,"abstract":"Objectives. The paper aimed to develop and validate a neural network model for spatial data analysis. The advantage of the proposed model is the presence of a large number of degrees of freedom allowing its flexible configuration depending on the specific problem. This development is part of the knowledge base of a deep machine learning model repository including a dynamic visualization subsystem based on adaptive web interfaces allowing interactive direct editing of the architecture and topology of neural network models.Methods. The presented solution to the problem of improving the accuracy of spatial data analysis and classification is based on a geosystem approach for analyzing the genetic homogeneity of territorial-adjacent entities of different scales and hierarchies. The publicly available EuroSAT dataset used for initial validation of the proposed methodology is based on Sentinel-2 satellite imagery for training and testing machine learning models aimed at classifying land use/land cover systems. The ontological model of the repository including the developed model is decomposed into domains of deep machine learning models, project tasks and data, thus providing a comprehensive definition of the formalizing area of knowledge. Each stored neural network model is mapped to a set of specific tasks and datasets. Results. Model validation for the EuroSAT dataset algorithmically extended in terms of the geosystem approach allows classification accuracy to be improved under training data shortage within 9% while maintaining the accuracy of ResNet50 and GoogleNet deep learning models.Conclusions. The implemention of the developed model into the repository enhances the knowledge base of models for spatial data analysis as well as allowing the selection of efficient models for solving problems in the digital economy.","PeriodicalId":282368,"journal":{"name":"Russian Technological Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of a neural network model for spatial data analysis\",\"authors\":\"E. Yamashkina, S. Yamashkin, O. V. Platonova, S. Kovalenko\",\"doi\":\"10.32362/2500-316x-2022-10-5-28-37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives. The paper aimed to develop and validate a neural network model for spatial data analysis. The advantage of the proposed model is the presence of a large number of degrees of freedom allowing its flexible configuration depending on the specific problem. This development is part of the knowledge base of a deep machine learning model repository including a dynamic visualization subsystem based on adaptive web interfaces allowing interactive direct editing of the architecture and topology of neural network models.Methods. The presented solution to the problem of improving the accuracy of spatial data analysis and classification is based on a geosystem approach for analyzing the genetic homogeneity of territorial-adjacent entities of different scales and hierarchies. The publicly available EuroSAT dataset used for initial validation of the proposed methodology is based on Sentinel-2 satellite imagery for training and testing machine learning models aimed at classifying land use/land cover systems. The ontological model of the repository including the developed model is decomposed into domains of deep machine learning models, project tasks and data, thus providing a comprehensive definition of the formalizing area of knowledge. Each stored neural network model is mapped to a set of specific tasks and datasets. Results. Model validation for the EuroSAT dataset algorithmically extended in terms of the geosystem approach allows classification accuracy to be improved under training data shortage within 9% while maintaining the accuracy of ResNet50 and GoogleNet deep learning models.Conclusions. The implemention of the developed model into the repository enhances the knowledge base of models for spatial data analysis as well as allowing the selection of efficient models for solving problems in the digital economy.\",\"PeriodicalId\":282368,\"journal\":{\"name\":\"Russian Technological Journal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Technological Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32362/2500-316x-2022-10-5-28-37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32362/2500-316x-2022-10-5-28-37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a neural network model for spatial data analysis
Objectives. The paper aimed to develop and validate a neural network model for spatial data analysis. The advantage of the proposed model is the presence of a large number of degrees of freedom allowing its flexible configuration depending on the specific problem. This development is part of the knowledge base of a deep machine learning model repository including a dynamic visualization subsystem based on adaptive web interfaces allowing interactive direct editing of the architecture and topology of neural network models.Methods. The presented solution to the problem of improving the accuracy of spatial data analysis and classification is based on a geosystem approach for analyzing the genetic homogeneity of territorial-adjacent entities of different scales and hierarchies. The publicly available EuroSAT dataset used for initial validation of the proposed methodology is based on Sentinel-2 satellite imagery for training and testing machine learning models aimed at classifying land use/land cover systems. The ontological model of the repository including the developed model is decomposed into domains of deep machine learning models, project tasks and data, thus providing a comprehensive definition of the formalizing area of knowledge. Each stored neural network model is mapped to a set of specific tasks and datasets. Results. Model validation for the EuroSAT dataset algorithmically extended in terms of the geosystem approach allows classification accuracy to be improved under training data shortage within 9% while maintaining the accuracy of ResNet50 and GoogleNet deep learning models.Conclusions. The implemention of the developed model into the repository enhances the knowledge base of models for spatial data analysis as well as allowing the selection of efficient models for solving problems in the digital economy.