JPG文件证书真实性的LSB-RSA算法实现

Hesti Putri Winasih, Eko Hari Rachmawanto, C. A. Sari, De Rosal Ignatius Moses Setiadi
{"title":"JPG文件证书真实性的LSB-RSA算法实现","authors":"Hesti Putri Winasih, Eko Hari Rachmawanto, C. A. Sari, De Rosal Ignatius Moses Setiadi","doi":"10.1109/iSemantic50169.2020.9234254","DOIUrl":null,"url":null,"abstract":"In an institution, the issue of a certificate document cannot be separated. Now, the development of technology makes certificate documents not only issued in paper form but can also be published online. The document must have security to prove its authenticity. If the document of the paper certificate there is a serial number or unique code to prove its authenticity, online certificate documents must also have a unique code to prove their authenticity. In this study, the LSB and RSA methods are used to prove the authenticity of the certificate. The secret message on the certificate document will be encrypted using the RSA algorithm. Encrypted messages will be entered into digital images using the LSB method. The results are represented in measurements, MSE (Mean Square Error), PSNR (Peak Signal to Noise Ratio), and BER (Bit Error Ratio). The combination of algorithms in this study produced very good values, the average PSNR value reached 73,4252 dB and an average value of BER equal to 1.4939.","PeriodicalId":345558,"journal":{"name":"2020 International Seminar on Application for Technology of Information and Communication (iSemantic)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Implementation of LSB-RSA Algorithm for the Authenticity of the JPG File Certificate\",\"authors\":\"Hesti Putri Winasih, Eko Hari Rachmawanto, C. A. Sari, De Rosal Ignatius Moses Setiadi\",\"doi\":\"10.1109/iSemantic50169.2020.9234254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an institution, the issue of a certificate document cannot be separated. Now, the development of technology makes certificate documents not only issued in paper form but can also be published online. The document must have security to prove its authenticity. If the document of the paper certificate there is a serial number or unique code to prove its authenticity, online certificate documents must also have a unique code to prove their authenticity. In this study, the LSB and RSA methods are used to prove the authenticity of the certificate. The secret message on the certificate document will be encrypted using the RSA algorithm. Encrypted messages will be entered into digital images using the LSB method. The results are represented in measurements, MSE (Mean Square Error), PSNR (Peak Signal to Noise Ratio), and BER (Bit Error Ratio). The combination of algorithms in this study produced very good values, the average PSNR value reached 73,4252 dB and an average value of BER equal to 1.4939.\",\"PeriodicalId\":345558,\"journal\":{\"name\":\"2020 International Seminar on Application for Technology of Information and Communication (iSemantic)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Seminar on Application for Technology of Information and Communication (iSemantic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSemantic50169.2020.9234254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Seminar on Application for Technology of Information and Communication (iSemantic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSemantic50169.2020.9234254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在一个机构中,证书文件的签发是不可分割的。现在,技术的发展使得证书文件不仅以纸质形式发布,而且可以在网上发布。该文件必须有保证书以证明其真实性。如果纸质证书的文件有序列号或唯一代码来证明其真实性,则在线证书文件也必须有唯一代码来证明其真实性。在本研究中,使用LSB和RSA方法来证明证书的真实性。证书文档上的秘密消息将使用RSA算法进行加密。加密的信息将使用LSB方法输入到数字图像中。结果用测量值MSE(均方误差)、PSNR(峰值信噪比)和BER(误码率)表示。本研究的算法组合产生了非常好的值,平均PSNR值达到73,4252 dB,平均BER值为1.4939。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation of LSB-RSA Algorithm for the Authenticity of the JPG File Certificate
In an institution, the issue of a certificate document cannot be separated. Now, the development of technology makes certificate documents not only issued in paper form but can also be published online. The document must have security to prove its authenticity. If the document of the paper certificate there is a serial number or unique code to prove its authenticity, online certificate documents must also have a unique code to prove their authenticity. In this study, the LSB and RSA methods are used to prove the authenticity of the certificate. The secret message on the certificate document will be encrypted using the RSA algorithm. Encrypted messages will be entered into digital images using the LSB method. The results are represented in measurements, MSE (Mean Square Error), PSNR (Peak Signal to Noise Ratio), and BER (Bit Error Ratio). The combination of algorithms in this study produced very good values, the average PSNR value reached 73,4252 dB and an average value of BER equal to 1.4939.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Independent Public Video Conference Network Sentiment Analysis of Yelp Review Extrovert and Introvert Classification based on Myers-Briggs Type Indicator(MBTI) using Support Vector Machine (SVM) Brain Segmentation using Adaptive Thresholding, K-Means Clustering and Mathematical Morphology in MRI Data Handwriting Recognition of Hiragana Characters using Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1