诊断数据共现模式的分层可视化

J. Balcázar, Marie Ely Piceno, Laura Rodríguez-Navas
{"title":"诊断数据共现模式的分层可视化","authors":"J. Balcázar, Marie Ely Piceno, Laura Rodríguez-Navas","doi":"10.1109/CBMS.2019.00043","DOIUrl":null,"url":null,"abstract":"The authors have recently proposed the usage of modular decompositions of Gaifman graphs as an exploratory data analysis tool. We describe how these techniques allow for a compact, hierarchical visualization of the patterns of cooccurrence between data items, in the context of medical data corresponding to simultaneous diagnostics of patients.","PeriodicalId":311634,"journal":{"name":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hierarchical Visualization of Co-Occurrence Patterns on Diagnostic Data\",\"authors\":\"J. Balcázar, Marie Ely Piceno, Laura Rodríguez-Navas\",\"doi\":\"10.1109/CBMS.2019.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors have recently proposed the usage of modular decompositions of Gaifman graphs as an exploratory data analysis tool. We describe how these techniques allow for a compact, hierarchical visualization of the patterns of cooccurrence between data items, in the context of medical data corresponding to simultaneous diagnostics of patients.\",\"PeriodicalId\":311634,\"journal\":{\"name\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2019.00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2019.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

作者最近提出使用Gaifman图的模块化分解作为一种探索性数据分析工具。我们描述了这些技术如何在与患者同步诊断相对应的医疗数据上下文中实现数据项之间协同模式的紧凑、分层可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical Visualization of Co-Occurrence Patterns on Diagnostic Data
The authors have recently proposed the usage of modular decompositions of Gaifman graphs as an exploratory data analysis tool. We describe how these techniques allow for a compact, hierarchical visualization of the patterns of cooccurrence between data items, in the context of medical data corresponding to simultaneous diagnostics of patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysing the Performance of a Real-Time Healthcare 4.0 System using Shared Frailty Time to Event Models Performance of Data Enhancements and Training Optimization for Neural Network: A Polyp Detection Case Study I Know How you Feel Now, and Here's why!: Demystifying Time-Continuous High Resolution Text-Based Affect Predictions in the Wild Identifying Diabetic Retinopathy from OCT Images using Deep Transfer Learning with Artificial Neural Networks Towards an Analysis of Post-Transcriptional Gene Regulation in Psoriasis via microRNAs using Machine Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1