基于FPGA的宽带可编程高斯噪声发生器

Dan Pritsker, Colman Cheung, Hong Shan Neoh, G. Nash
{"title":"基于FPGA的宽带可编程高斯噪声发生器","authors":"Dan Pritsker, Colman Cheung, Hong Shan Neoh, G. Nash","doi":"10.1109/NAECON46414.2019.9058065","DOIUrl":null,"url":null,"abstract":"Gaussian Noise Generators are common in various applications of Electronic Countermeasures and Low Probability of Intercept radar. It can be applied to military applications, law enforcement and commercial segments. The key requirement for such a generator is the ability to operate in wide spectral band. The main driver for this requirement is the ever increasing radars bandwidth to achieve high radar resolution.In addition to wideband capabilities, it is important to have a fine control over the suppressed and unsuppressed spectral frequencies. The countermeasures must allow friendly system to continue to operate, while suppressing the adversary systems. Moreover, due to limited transmit power envelope on analog RF power amplifier chain, it is advantageous to limit a transmission only to specific band-limited regions. The countermeasures should be able to reconfigure its settings in terms of active spectral frequencies agilely, when operational conditions or power considerations change. This paper presents proposed implementation on FPGA that achieves such key metrics.","PeriodicalId":193529,"journal":{"name":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wideband Programmable Gaussian Noise Generator on FPGA\",\"authors\":\"Dan Pritsker, Colman Cheung, Hong Shan Neoh, G. Nash\",\"doi\":\"10.1109/NAECON46414.2019.9058065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaussian Noise Generators are common in various applications of Electronic Countermeasures and Low Probability of Intercept radar. It can be applied to military applications, law enforcement and commercial segments. The key requirement for such a generator is the ability to operate in wide spectral band. The main driver for this requirement is the ever increasing radars bandwidth to achieve high radar resolution.In addition to wideband capabilities, it is important to have a fine control over the suppressed and unsuppressed spectral frequencies. The countermeasures must allow friendly system to continue to operate, while suppressing the adversary systems. Moreover, due to limited transmit power envelope on analog RF power amplifier chain, it is advantageous to limit a transmission only to specific band-limited regions. The countermeasures should be able to reconfigure its settings in terms of active spectral frequencies agilely, when operational conditions or power considerations change. This paper presents proposed implementation on FPGA that achieves such key metrics.\",\"PeriodicalId\":193529,\"journal\":{\"name\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON46414.2019.9058065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON46414.2019.9058065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高斯噪声发生器在电子对抗和低概率拦截雷达的各种应用中是常见的。它可以应用于军事应用,执法和商业领域。对这种发生器的关键要求是能够在宽频谱带中工作。这一需求的主要驱动因素是不断增加的雷达带宽,以实现高雷达分辨率。除了宽带能力,重要的是要有一个良好的控制抑制和非抑制的频谱频率。对抗措施必须允许友好系统继续运作,同时压制对手系统。此外,由于模拟射频功率放大器链上的发射功率包络有限,将传输限制在特定的带限区域是有利的。当操作条件或功率考虑发生变化时,对抗措施应该能够根据有效频谱灵活地重新配置其设置。本文提出了在FPGA上实现这些关键指标的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wideband Programmable Gaussian Noise Generator on FPGA
Gaussian Noise Generators are common in various applications of Electronic Countermeasures and Low Probability of Intercept radar. It can be applied to military applications, law enforcement and commercial segments. The key requirement for such a generator is the ability to operate in wide spectral band. The main driver for this requirement is the ever increasing radars bandwidth to achieve high radar resolution.In addition to wideband capabilities, it is important to have a fine control over the suppressed and unsuppressed spectral frequencies. The countermeasures must allow friendly system to continue to operate, while suppressing the adversary systems. Moreover, due to limited transmit power envelope on analog RF power amplifier chain, it is advantageous to limit a transmission only to specific band-limited regions. The countermeasures should be able to reconfigure its settings in terms of active spectral frequencies agilely, when operational conditions or power considerations change. This paper presents proposed implementation on FPGA that achieves such key metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physical Cyber-Security of SCADA Systems Cluster-Based Hungarian Approach to Task Allocation for Unmanned Aerial Vehicles Privacy Preserving Medium Access Control Protocol for wireless Body Area Sensor Networks Gaussian Beam Propagation Through Turbulent Atmosphere using Second-Order Split-Step Algorithm A generalized equivalent circuit model for large-scale battery packs with cell-to-cell variation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1