利用人工神经网络对埃及苏伊士海湾地区地震事件进行分类

M.A. Abu-Elsoud, F. Abou-Chadi, A. M. Amin, M. Mahana
{"title":"利用人工神经网络对埃及苏伊士海湾地区地震事件进行分类","authors":"M.A. Abu-Elsoud, F. Abou-Chadi, A. M. Amin, M. Mahana","doi":"10.1109/ICEEC.2004.1374460","DOIUrl":null,"url":null,"abstract":"An automatic system has been developed to classijj the seismic events in the Suez Gulf area, Egypt. The system is based on Artificial Neural Network (ANN) and is composed of two modules; extracting a set of features that quantifies the seismogram signatures using Linear Predication Code (LPC) and a classifer to discriminate the seismic events The data used are a set of 320 seismic recorded by Egyptian National Seismic Network (ENSN); 142 records are explosions and 178 are local earthquakes. n e classification results have shown that the suggested system is eficient it provides a correct classijcation performance of 93.7%.","PeriodicalId":180043,"journal":{"name":"International Conference on Electrical, Electronic and Computer Engineering, 2004. ICEEC '04.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Classification of seismic events in suez gulf area, egypt using artificial neural network\",\"authors\":\"M.A. Abu-Elsoud, F. Abou-Chadi, A. M. Amin, M. Mahana\",\"doi\":\"10.1109/ICEEC.2004.1374460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An automatic system has been developed to classijj the seismic events in the Suez Gulf area, Egypt. The system is based on Artificial Neural Network (ANN) and is composed of two modules; extracting a set of features that quantifies the seismogram signatures using Linear Predication Code (LPC) and a classifer to discriminate the seismic events The data used are a set of 320 seismic recorded by Egyptian National Seismic Network (ENSN); 142 records are explosions and 178 are local earthquakes. n e classification results have shown that the suggested system is eficient it provides a correct classijcation performance of 93.7%.\",\"PeriodicalId\":180043,\"journal\":{\"name\":\"International Conference on Electrical, Electronic and Computer Engineering, 2004. ICEEC '04.\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Electrical, Electronic and Computer Engineering, 2004. ICEEC '04.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEC.2004.1374460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Electrical, Electronic and Computer Engineering, 2004. ICEEC '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEC.2004.1374460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在埃及苏伊士海湾地区研制了一套地震事件自动分类系统。该系统基于人工神经网络(ANN),由两个模块组成;利用线性预测码(Linear prediction Code, LPC)和分类器对地震事件进行判别,提取一组量化地震记录特征,所使用的数据是埃及国家地震台网(ENSN)记录的320次地震;142个记录是爆炸,178个是当地地震。N个分类结果表明,该系统是有效的,分类正确率为93.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of seismic events in suez gulf area, egypt using artificial neural network
An automatic system has been developed to classijj the seismic events in the Suez Gulf area, Egypt. The system is based on Artificial Neural Network (ANN) and is composed of two modules; extracting a set of features that quantifies the seismogram signatures using Linear Predication Code (LPC) and a classifer to discriminate the seismic events The data used are a set of 320 seismic recorded by Egyptian National Seismic Network (ENSN); 142 records are explosions and 178 are local earthquakes. n e classification results have shown that the suggested system is eficient it provides a correct classijcation performance of 93.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of superconducting microstrip line using transverse resonance technique Sensitivity of radial-basis networks to single-example decision classes Comparison of branch prediction schemes for superscalar processors ICEEC 2004 Integrator frequency synthesizer Fuzzy logic control of the mean arterial pressure of ICu patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1