{"title":"基于分形编码和深度信念网络的人脸识别","authors":"Mohamed Benouis","doi":"10.4018/jitr.2021100107","DOIUrl":null,"url":null,"abstract":"An enhanced algorithm to recognize the human face using bi-dimensional fractal codes and deep belief networks is presented in this work. The proposed method is experimentally robust against variations in the appearance of human face images, despite different disturbances affecting the measurements and the acquisition process such as occlusion, changes in lighting, pose, and expression or the presence or absence of structural components. That is mainly based on fractal codes (IFS) and bi-dimensional subspaces for features extraction and space reduction, combined with a deep belief network (DBN) classifier. The evaluation is performed through comparisons using probabilistic neural network (PNN) and nearest neighbours (KNN) approaches on three well-known databases (FERET, ORL, and FEI). The results suggest the effectiveness and robustness of the proposed approach.","PeriodicalId":296080,"journal":{"name":"J. Inf. Technol. Res.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Face Recognition Based on Fractal Code and Deep Belief Networks\",\"authors\":\"Mohamed Benouis\",\"doi\":\"10.4018/jitr.2021100107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An enhanced algorithm to recognize the human face using bi-dimensional fractal codes and deep belief networks is presented in this work. The proposed method is experimentally robust against variations in the appearance of human face images, despite different disturbances affecting the measurements and the acquisition process such as occlusion, changes in lighting, pose, and expression or the presence or absence of structural components. That is mainly based on fractal codes (IFS) and bi-dimensional subspaces for features extraction and space reduction, combined with a deep belief network (DBN) classifier. The evaluation is performed through comparisons using probabilistic neural network (PNN) and nearest neighbours (KNN) approaches on three well-known databases (FERET, ORL, and FEI). The results suggest the effectiveness and robustness of the proposed approach.\",\"PeriodicalId\":296080,\"journal\":{\"name\":\"J. Inf. Technol. Res.\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inf. Technol. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jitr.2021100107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Technol. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jitr.2021100107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Face Recognition Based on Fractal Code and Deep Belief Networks
An enhanced algorithm to recognize the human face using bi-dimensional fractal codes and deep belief networks is presented in this work. The proposed method is experimentally robust against variations in the appearance of human face images, despite different disturbances affecting the measurements and the acquisition process such as occlusion, changes in lighting, pose, and expression or the presence or absence of structural components. That is mainly based on fractal codes (IFS) and bi-dimensional subspaces for features extraction and space reduction, combined with a deep belief network (DBN) classifier. The evaluation is performed through comparisons using probabilistic neural network (PNN) and nearest neighbours (KNN) approaches on three well-known databases (FERET, ORL, and FEI). The results suggest the effectiveness and robustness of the proposed approach.